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1 Introduction

1.1 About These Notes

These are course notes for a two-semester graduate topics course on multiparameter persistence
taught at UAlbany in 2022-2023. They are a revised and expanded version of notes from a
one-semester version of the course taught in 2019. The notes are still incomplete in various
ways, but they are far enough along to be a useful resource for students wishing to learn this
subject. With the course now over, I will continue to polish the notes and add material as
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time allows, but progress will be slower than during the course. Your feedback on the notes
is always welcome. In particular, feel free to notify me about any typos.

The course was targeted at Masters and early-stage Ph.D. students in mathematics with
some exposure to algebraic topology and abstract algebra, but not necessarily any background
in TDA. Thus, the early part of the notes focuses to a large extent on 1-parameter persistent
homology, though many ideas are presented in more generality, with a view towards our
main topic of multiparameter persistence. In particular, the notes introduce posets and basic
category theory language from almost the very beginning, and use this throughout. In this
respect, my treatment of even 1-parameter persistence differs from most of the others in print.
Another notable feature of the exposition is a careful consideration of homotopy-theoretic
matters in persistence theory, e.g., weak equivalence of diagrams of spaces, general versions
of the persistent nerve theorem, and homotopy interleavings are introduced early on and
used throughout the text.

1.2 Acknowledgements

A few sections of these notes (currently, Sections 1.7.5 and 10) incorporate material from
the article “An Introduction to Multiparameter Persistence” by Magnus Botnan and me [35].
Parts of some of the algorithmic material in Section 20 have been adapted from the paper
“Computing Minimal Presentations of 2-parameter persistence modules” [127]. The material
on quiver representations in Section 19 benefited from discussions with Botnan and Ulrich
Bauer. Bauer also provided helpful input on computation of Delaunay triangulations and
filtrations, discussed in Section 5.5.2. The material on the rhomboid tiling in Section 13 was
influenced by many conversations with Abhishek Rathod on related matters. To prepare the
description of RIVET’s algorithm for computing the degree-Rips bifiltration in Section 17,
I adapted parts of a description of it shared privately with me by Roy Zhao. I’d like to
thank my AMAT 840 students and other readers for many helpful corrections. Finally, I
want to acknowledge all of my collaborators on multiparameter persistence, who have had a
big influence on these notes.

1.3 Opening Remarks

This is a course about topological data analysis (TDA), and specifically, about an approach
to TDA called multiparameter persistent homology (MPH). Persistent homology (1PH) is the
most widely studied and applied TDA method. MPH is a generalization that arises naturally
in a number of places, e.g., in the study of:

• noisy point cloud data,
• time-varying data,
• point clouds equipped with an R-valued function,
• tendrils in data.
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MPH yields algebraic invariants of data that are much richer but also much more complex
than those provided by 1PH. Because of that complexity, 1PH theory and methodology tends
not to extend naively to MPH; to work with MPH, new ideas are required. In the last few
years, there has been exciting progress in the development of such ideas, and MPH has become
one of the most active areas of research in TDA. Still, whereas practical applications of 1PH
have flourished in the last 10-15 years, practical applications of MPH remain under-explored.

I believe MPH has the potential to be as useful as 1PH in practical data analysis problems,
and to become a key addition to the basic data science toolkit. But to reach this point, major
further progress is needed. In this class, we will study MPH with a focus on the problem
of realizing the promise of MPH as a principled, practical data analysis tool. Students who
complete this course will leave well-prepared to do research in MPH; we will see that with this
being a very young field, one does not have venture too far before encountering fundamental
questions which have not been touched. Students who choose not to pursue research in MPH
(or TDA) will at least learn some cool math which is relevant elsewhere.

As with other branches of data science and applied math, progress in TDA is driven by
the interplay between theory, computation, and applications. To me, this interplay is one of
the most exciting aspects of TDA, and of MPH. It will be a main theme of the course.

The main prerequisites for this course are abstract algebra (groups, rings, fields, abstract
vector spaces) and (simplicial and singular) homology. General mathematical maturity (at
the level of a first-year or second-year math graduate student) is also required.

1.4 Course Outline

Below is a rough, tentative outline of topics I initially hoped to cover in my two-semester
course. We did not cover all of these, and some of the topics we did cover are not yet included
here; topics not yet covered in these notes are written in red.

• The basics of 1-parameter persistent homology, including the persistence algorithm and
algebraic stability,

• Construction of multiparameter filtrations from data,
• The difficulty of defining (unsigned) barcodes for MPH
• Elements of quiver representation theory
• Signed barcodes
• Interleavings and stability theory
• Minimal presentations/resolutions and their computation
• Computable metrics on multiparameter persistence modules
• Computation of density-sensitive bifiltrations (namely, the degree-Rips and multicover

bifiltrations)
• Upset presentations and the bipersistence of smooth functions
• Sheaf-theoretic viewpoints on generalized persistence
• Visualization of 2-parameter persistent homology
• Vectorization of persistence modules for machine learning
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• Applications

1.5 What is Topological Data Analysis?

In this course, prior knowledge of TDA is not assumed, so we will begin with a general
discussion of TDA. TDA is the branch of data science which applies topology to study the
shape of data. TDA dates back to at least the early 90’s, but in the last 20 years, the field of
TDA has advanced rapidly, leading to a rich theoretical foundation, highly efficient algorithms
and software, and hundreds of applications [104].

TDA can handle many different types of data, but for now, it will suffice to consider the
following types:

1. Point clouds, i.e., finite subsets of Rn.
2. More generally, finite metric spaces.
3. Functions f : T → R, where T is a topological space.

Where does such data come from in applications? Here are just a few examples that are
commonly considered in TDA.

• The centers of atoms in a material (e.g., a glass) or in a biomolecule determine a point
cloud in R3, as illustrated below:

• If we record the level of expression of each of, say, 24,000 genes in 300 breast cancer
tumor samples, this gives us a cloud of 300 points in R24,000.

• A set of RNA virus genomes (of, say, SARS-CoV-2 or HIV) can be endowed with a
metric in various ways. One common way is to align the DNA sequences (there are
various methods for this) and take the Hamming distance (i.e., count of differences)
between aligned sequences. For example, if we align the sequences

G A U C C C G U A U A U A G
G U C U C A U A U A A G

as follows
G A U C C C G U A U A U A G
G - U C U C A U A U A - A G

then the Hamming distance between the aligned sequences is 4.
• A greyscale image can be modeled as a function f : T → R where T is a rectangle and
f(x) to be the intensity of the image at x ∈ T .
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Informally, when we talk about the shape of point cloud or metric data in the context of
TDA, we usually have in mind coarse-scale, global, non-linear geometric features like clusters,
loops, and tendrils :

In fact, data clustering is a very old and extensively studied problem in computer science
and statistics, but this is also a fundamental part of TDA, and TDA has brought some
interesting new ideas to the problem, e.g., in [64]. In TDA we take a broad view of what
“shape” can mean; the tools are flexible enough to study a wide range of shape structure in
data.

In TDA we also study the shape features of functional data, such as modes and ridges.
For example, the R-valued function graphed below is has two modes, while the R2-valued
function graphed below has a circular ridge:

The shape features in the examples above are very “clean”; but in applications, one often
encounters “noisy” shape structure, and TDA needs to be able to handle these. For example,
the point cloud below has an evident loop, but we see some low-density noise that was not
present in the example above.
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Similarly, the R-valued function graphed below has two dominant peaks, as in the previous
example, but has many many modes, which we may regard as noise.

In TDA, we seek to:

1. give formal definitions of the shape features of data,
2. develop computational tools for detecting these features,
3. design methodology for quantifying the statistical significance of such features,
4. exploit these features in practical applications.

At a very high level of abstraction, the basic TDA pipeline is as follows: Given a data set
X, we

1. Construct a (commutative) diagram of topological spaces F (X) in a way that topologi-
cally encodes some geometric structure of interest in X.

2. Analyze the topological structure of F (X) using established topological and algebraic
tools, e.g., homology.

As there are many ways in which we can construct a diagram of spaces from a data set,
this turns out to be a very flexible pipeline for studying the shape of data. And because
the machinery of topology and modern algebra is very highly developed, we have powerful
machinery at our disposal for understanding this approach to data analysis; this has enabled
the development of a rich theory for TDA.

1.6 The Idea of Persistent Homology

The most widely studied and applied instance of the TDA pipeline is persistent homology.
Persistent homology provides signatures of data called barcodes.

Here we give a an informal introduction to persistent homology, saving a formal treatment
for later. Let us consider again the point cloud in R2 with a loop that we saw above; we
redraw it here:
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Let us call this point cloud X. Intuitively, we see that there is a loop in X, but how do make
this precise? Algebraic topology offers two main tools for detecting holes in geometric objects,
homotopy groups and homology groups. Homology is usually much easier to compute, so it
is natural to try to use it to detect the loop in X.

In this course we’ll work primarily homology with coefficients in a field; we’ll review this in
detail later, but let’s now recall just one of its key properties: First, fix a field K, say K = Q
or K = Z/2Z, and let N denote the non-negative integers. For each i ∈ N and topological
space X, homology with coefficients in K provides a K-vector space HiX. Loosely speaking,
dimHiX is the number of i-dimensional holes in HiX.

Since X is finite, we have dimH0X = |X| and dimHiX = 0 for all i ≥ 0. Thus, homology
tells us nothing interesting about our data, and in particular, does not tell us that X has
a loop structure. One apparently reasonable fix is to consider a thickened version of X, as
shown below:

We call this thickened object the r-offset of X and denote it O(X)r, where r > 0 is a
parameter. Formally, we define

O(X)r =
⋃
x∈X

B(x, r),

where B(X, r) is the closed ball of radius r centered at x. For the choice of r shown in the
picture, we have dimH1(O(X)r) = 1. Thus dimH1(O(X)r) correctly counts the number of
“loops” in X.

Studying the loop structure of a data set X by considering dimH1(O(X)r) for suitable r
can be considered very rudimentary form of TDA. However, in general this simple approach
has several serious problems:

1. There is no canonical choice of r, and in general it is unclear how we should choose r.
In fact, the following example shows that there may be no single choice of r for which
homology of the r-offset fully captures the shape of the data:
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2. This approach is unstable with respect to perturbations of data or changes in r.
3. It doesn’t distinguish small holes from big ones.
4. It is unstable to the addition or removal of outliers.

Persistent homology provides an elegant solution to each of the first three problems, but
(arguably) not the last one. One major theme of this course is that to address the last
problem, it is very natural to consider 2-parameter persistence.

We call the 1-parameter family of spaces O(X) := {O(X)r}r∈[0,∞) the offset filtration
of X. The essential idea behind persistent homology is that we should not consider the
topology of O(X)r for a single choice of r, but rather consider the topology of the entire
offset filtration, as a whole.

To get a feel for persistent homology, let us return to the example above of the point
cloud with two loops; call this Y . Consider how the spaces O(Y )r change as we increase the
parameter r, as illustrated below:

At small values of r, some small holes appear in O(X)r (second subfigure), then quickly close
up as r increases (third subfigure). Around the same time, a large hole appears in O(X)r
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(third subfigure), corresponding to the smaller loop in the data. As r increases, this hole
shrinks, and then finally closes up (8th subfigure). Then a large hole forms, corresponding to
the larger loop in the data (8th subfigure). This hole then shrinks (9th subfigure) and finally
closes up (not shown).

The language of holes “forming”, “shrinking”, and “closing up” which I have used here
points towards the fundamental intuitive idea underlying persistent homology: Holes in the
spaces O(Y )r persist over a range of r-values; therefore, we can regard holes not only as
features of the individual spaces O(Y )r, but of the entire filtration O(Y ). Intuitively, this
allows us to associate a barcode to O(Y ). The barcode is a collection of intervals, where

• each interval corresponds to a hole in O(Y ),
• the left endpoint of the interval is the value of r at which the hole forms,
• the right endpoint of the interval is the value of r at which the hole closes up.

The 1st homology barcode associated to Y is shown below.

Note the two long intervals, which correspond to the two loops in the data. We regard the
smaller intervals as “topological noise.” (Note: I drew this barcode by hand, so it is not fully
precise.)

As we will see later, one can make this intuitive explanation of barcodes precise by
appealing to the functoriality of homology along with a structure theorem for diagrams of
vector spaces indexed by a totally ordered set.

Such barcodes can be readily computed in practice. In computations, we typically do not
work directly with the offset filtration, but rather with a topologically equivalent filtration of
simplicial complexes that is more amenable to computation, the Delaunay filtration. For high
dimensional data, or data not embedded in a metric space, an alternative simplicial filtration
called the Rips filtration is a popular choice. Given this simplicial filtration, the barcode can
be computed by a variant of Gaussian elimination.

Persistent homology has been applied in many areas, including computational chemistry
[134], materials science [112, 123], neuroscience [105, 146, 155], and bioinformatics [140]. It is
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useful for exploratory data analysis [51, 59, 112], and is commonly integrated into pipelines
for supervised learning [111].

One of the central results of the persistence theory is that these barcodes are stable to
small perturbations of the data: if we move each of the data points a small amount, or add
in points close to other points, then the barcode does to change very much. This turns out
to be a corollary of a beautiful abstract algebra result, the algebraic stability theorem.

We will cover computation of persistent homology and the stability theory carefully in
this course, and also devote some time to applications.

1.7 Multiparameter Persistence

1.7.1 1-Parameter Persistence is Not Robust

While the stability theorem for persistent homology is fundamental, it says nothing about
robustness, i.e., stability to outliers. Indeed, the construction of persistent homology described
above (via the offset filtration) is highly unstable to outliers. For example, think about what
would happen to the barcodes in the example above if we add a few points in the interior of
one of loops. A closely related issue is that this construction can be insensitive to structure
in high-density regions of the data.

Several solutions to these issues have been proposed within the framework of 1-parameter
PH; see [30] for an overview. Some of these can be very useful, but as we will discuss later
in the course, they share certain disadavantages. Most notably, all 1-parameter approaches
require us to fix at least one parameter, and this can be problematic in much same way that
fixing the scale parameter r in the offset construction is problematic.

1.7.2 The Multicover Bifiltration

A natural solution is to consider 2-parameter persistent homology: Instead of building a
1-parameter family of spaces from the data, we build a 2-parameter family, where one of
the parameters is a scale parameter, as in the offset filtration, and the other parameter is a
density (or measure) threshold.

There are a number of closely related such constructions, which we will discuss later in
this course. We describe just one now:

Definition 1.1. For X ⊂ Rn, and (k, r) ∈ [0,∞)2, define

M̃(X)k,r = {y ∈ Rn | ∃ k points x ∈ X with ∥y − x∥ ≤ r}

In words, M̃(X)(k,r) consists of all points covered by at least k balls of radius r centered at
points of X. As k and r vary, we get a 2-parameter family of spaces, called the (unnormalized)
multicover bifiltration of X.

The following figure, taken from [76], illustrates the definition for a single choice of r and
two choices of k:
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k = 2 k = 3

We will see in this course that the multicover bifiltration satisfies a very strong robustness
theorem, closely analogous to the stability theorem for offset-persistent homology [30].
Moreover, for n fixed, it is computable (up to the appropriate notion of topological equivalence)
in polynomial time [76].

1.7.3 No (unsigned) 2-Parameter Barcodes

Naively, one might hope that we can define a barcode of the multicover bifiltration as a
collection of “nice” regions in R2, e.g., regions like the following ones:

But in a sense that we will make precise later, this is not possible, for algebraic reasons.
On the other hand, it was recently discovered that there is an elegant notion of a signed
barcode for multiparameter persistence, where regions in R2 are assigned an integer (possibly
negative) multiplicity; see [36] and the references contained there. In fact, as we will discuss
later in the course, there are multiple reasonable ways to define such a signed barcode. Signed
barcodes are a sufficiently new idea that we don’t yet fully understand the role they will
play in the development of MPH, but at the very least, they promise to be very useful for
visualization. In this course, we’ll be spending significant time to understand all of this.

We will also see even without any notion of a barcode for MPH, there are good ways to
proceed with the theory and practice of MPH.

1.7.4 The Analogy Between 1-Parameter and 2-Parameter Persistence

The discovery of unsigned barcodes for multiparameter persistence is just one manifestation
of a broader phenomenon in MPH: Many of the key ideas of 1-parameter persistence have
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very natural, yet non-obvious analogues in the 2-parameter (or multiparameter) setting. The
following table describes aspects of this analogy; we’ll be discussing everything in this table
in our course.

1-parameter 2-parameter

filtrations
offset multicover
Rips subdivision (degree)

Delauany rhomboid

metrics

Hausdorff Prohorov
Gromov-Hausdorff Gromov-Prohorov

Bottleneck (Homotopy) Interleaving
Wasserstein (on barcodes) Presentation

structure thm. interval decomposition Krull-Schmidt-Azumaya
invariant barcode fibered/unsigned barcode

main computation barcode minimal presentation
tool persistent nerve thm. multicover nerve thm.

1.7.5 Main Themes

Our treatment of MPH in this course will center around a few key themes which underly
much of the recent progress in the field, some of which are already hinted at in the table
above. The material of this subsection is adapted from [35].

1. Invariants. Though defining multiparameter barcodes is problematic, many simple
invariants of persistence modules are available to us, which can serve as a surrogate for
a barcode in applications.

2. Visualization Visualization of barcodes has been critical to the practical success of
1-parameter persistence. The problem of visualizing (invariants of) MPH in a practical,
computationally efficient way may be similarly importance to the success of MPH.

3. Metrics, Stability, and Approximation Metrics on barcodes play an important role
in both theory and applications of 1-parameter persistence. Analogously, to develop
the theory and applications of MPH, we need good metrics in the multiparameter
setting. Perhaps surprisingly, though defining barcodes for MPH is problematic, we
have well-behaved extensions of the standard metrics on barcodes to the multiparameter
persistence modules. We can use to these to formulate stability and approximation
result for 2-parameter persistence.

4. Computation and Software Efficient algorithms are a critical prerequisite to practical
applications of MPH, as is user-friendly software implementing such algorithms. Activity
in the computational aspects of MPH has accelerated in recent years, especially in the
2-parameter setting, leading to several important advances which have lowered the
barrier to applications.
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5. Barcodes in Special Cases In spite of the difficulties, in general, with defining
barcodes of multiparameter persistence modules, in some special cases of interest, we
do have well-defined barcodes that are simple enough to work with. In particular, a
fundamental 2-parameter persistence invariant of R-valued functions called interlevel
set persistence has simple barcodes analogous to those in the 1-parameter setting
[18, 34, 71].

6. Sheaf-theoretic Viewpoints on Multiparameter Persistence More generally, for
topological spaces S and T , (e.g., T = R2), one can study functions f : S → T , though
the lens of persistence; sheaf theory and stratification theory offer a very natural set
of tools for studying this [21, 79, 83, 114, 144], whose use in practical applications is
perhaps under-explored.

7. Infinitely Presented but Tame Modules In applications of multiparameter per-
sistence, we often encounter diagrams of spaces F : Rn → Top. In many cases, the
homology HiF is finitely presented, in which case HiF has essentially the same structure
as an Nn-indexed persistence module M . But in some natural settings, HiF is not
finitely presented, yet satisfies a weaker finiteness property called tameness, where
generators and relations appear not only at single points in Rn, but along continuous
curves. Several recent works have studied MPH in such settings [7, 46, 131, 132]
leading to some interesting theoretical developments that have the potential to play an
important role in the field.

8. Applications There have been several efforts to develop practical applications of MPH,
e.g., to image analysis, computational chemistry, and shape analysis, which hint at
the promise of multiparameter persistence as a practical approach to data analysis
[4, 17, 22, 25, 55, 70, 115, 147, 167, 168]. Nevertheless, in spite of the widespread
interest in MPH among the TDA community and encouraging recent progress in the
field, applications of MPH are still in their infancy. Arguably, this is in large part
because the algorithms and software tools needed to study data at scale using MPH
have been introduced only very recently, and are still very much under development.

2 Review of Abstract Algebra and Homology Coeffi-

cients

In this class, we’ll make substantial use of elementary abstract linear algebra and and also
some use of module theory. Homology with field coefficients, which is framed in the language
of abstract linear algebra, will be particularly important to us.

A knowledge of basic abstract algebra is a prerequisite for this course, but do we a very
quick review here, and also very briefly discuss simplicial complexes and homology with field
coefficients.
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2.1 Abstract Algebra

Definition 2.1. An abelian group is a set G together with a operation +: G × G → G
satisfying all the usual properties of addition in the integers, namely,

• commutativity: a+b=b+a
• associativity: (a+b)+c=a+(b+c)
• existence of an additive identity: there exists an element 0 ∈ G such that a+ 0 = a for

all a ∈ G,
• existence of additive inverses: for each a ∈ G, there exists an element −a such that
a + a = 0.

Definition 2.2. A ring is a set R together with binary operations +: R × R → R and
· : R × R → R (called addition and multiplication, respectively) such that the following
properties hold:

• (R,+) is an abelian group,
• associativity of multiplication: (a · b) · c = a · (b · c),
• existence of a multiplicative identity: there exists an element 1 ∈ R such that 1 · a =
a · 1 = a for all a ∈ G,

• distributivity: a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

We often omit the symbol ·, and e.g, write a · b simply as ab.

Definition 2.3. A ring R in which multiplication is commutative is called a commutative
ring.

Definition 2.4. A field is a commutative ring F such that each nonzero a ∈ F has a
multiplicative inverse, i.e., an element a−1 ∈ F such that a× a−1 = 1 = a−1 × a.

Examples 2.5.

• The integers Z are a ring but not a field, e.g., 2 has no multiplicative inverse.
• The rational, real, and complex numbers, denoted Q, R, and C, are all examples of

fields.
• Given any ring R and positive integer d, the set of polynomials in d variables with

coefficients in R, with the usual definitions of addition and multiplication, is a ring.
We denote this as R[x1, . . . , xd], where x1, . . . , xd are the variable names. For instance,
x+ 3y2 and 2x2y − 5y5 are elements of Z[x, y], and we have

(x+ 3y2) + (2x2y − 5y5) = x+ 3y2 + 2x2y − 5y5,

(x+ 3y2)(2x2y − 5y5) = 2x3y − 5xy5 + 6x2y3 − 15y7.

We’ll mostly be interested in commutative rings in this course, though non-commutative
rings will arise at some point. For the rest of this section all rings we consider will be
commutative.
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Definition 2.6. A subset I of a commutative ring R is called an ideal of R if

• I is closed under addition, i.e., a, b ∈ I implies a+ b ∈ I,
• I is closed under multiplication with arbitrary elements of R, i.e., r · a ∈ I whenever
r ∈ R and a ∈ I.

Example 2.7. For any n ∈ Z, the nZ := {nz | z ∈ Z} is an ideal of Z.

Definition 2.8 (Quotient Ring). Given a ring R and an ideal I ⊂ R, let R/I denote the set
of equivalence classes of the equivalence relation ∼ on R given by

r ∼ r′ if and only if r − r′ ∈ I.

R/I inherits the structure of a ring, with addition given by [r]+[r′] = [r+r′], and multiplication
given by [r][r′] = [rr′].

One must check that the above definitions indeed give a well defined addition and
multiplication operations in R/I, i.e., that they don’t depend on the choice of representatives
for the equivalence classes.

Example 2.9. The most important example of a quotient ring is Z/nZ. In fact, this ring is
a field if and only if n is prime. For a proof, see any introductory abstract algebra textbook,
e.g., Dummit and Foote.

Modules are a natural common generalization of abelian groups and ideals; they will play
an important role in our course. The definition depends on a choice of ring R. In general, R
needn’t be commutative, but we’ll only to consider modules over a commutative ring R in
this course.

Definition 2.10. Given a commutative ring R, an R-module is a set M together with a
binary operation + : M ×M → M and a scalar multiplication · : R ×M → M satisfying
the following properties:

• (M,+) is an abelian group,
• distributivity over addition in M : r · (m + m′) = r · m + r · m′ for all r ∈ R and
m,m′ ∈M ,

• distributivity over addition in R: (r+ s) ·m = r ·m+ s ·m for all r, s ∈ R and m ∈M ,
• associativity (r · s) ·m = r · (s ·m) for all r, s ∈ R and m ∈M ,
• 1 ·m = m for all m ∈M .

As with ring multiplication, we often write the scalar multiplication m · r simply as mr.

Examples 2.11.

• Any abelian group G is a Z-module, with

z · g = g + g + · · ·+ g︸ ︷︷ ︸
z times

,
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• any commutative ring R is an R-module, with the scalar multiplication taken to be the
multiplication in R.

Definition 2.12. A submodule of an R-module M is a subset N ⊂M which is closed under
addition and scalar multiplication. N inherits the structure of an R-module from M .

Example 2.13. Any ideal I ⊂ R of a commutative ring of R is a submodule of R.

Definition 2.14.

(i) If K is a field, we call a K-module a (K-)vector space.
(ii) A submodule of a vector space is called a subspace.

All the vector spaces you have seen in more elementary courses are instances of this
abstract definition. In particular,

Example 2.15. For any field K and n ∈ N+,

Kn := {(x1, . . . , xn) | each xi ∈ K}

is a K-vector space, with addition and scalar multiplication given coordinate-wise.

The usual definitions of quotient groups extends immediately to modules as follows:

Definition 2.16 (Quotient Module). Given an R-module M and a submodule N ⊂M , let
M/N denote the set of equivalence classes of the equivalence relation on M given by

m ∼ m′ if and only if m−m′ ∈ N.

M/N inherits the structure of an R-module, with addition given by [m] + [m′] = [m+m′],
and scalar multiplication given by r[m] = [rm].

In particular, this gives us a definition of a quotient vector space.
The usual isomorphism theorems for groups and rings extend to modules, with the same

proofs; I will assume that you are familiar with the versions for groups and rings, and I will
not write down the versions for modules.

Definition 2.17. A homomorphism f : M → N of R-modules is a function from M to N
such that

• f(m+m′) = f(m) + f(m′) and
• f(r ·m) = r · f(m)

for all m,m′ ∈M and r ∈ R. A homomorphism of vector spaces is called a linear transfor-
mation or linear map.

Remark 2.18. For any module homomorphism f : M → N ,

ker(f) := {m ∈M | f(m) = 0}

and
im(f) := {n ∈ N | n = f(m) for some m}

are both easily checked to be submodules.
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2.2 Abstract Linear Algebra

We give a brief overview of some bits of abstract linear algebra that will be needed in this
course. For a more thorough treatment of this material, including the proofs omitted here
and examples, a good resource is Axler’s text Linear Algebra Done Right [9].

Definitions 2.19.

(i) For S a subset of a K-vector space V , a linear combination of elements in S is a sum

c1s1 + c2s2 + · · ·+ cksk,

with each ci ∈ K and each si ∈ S.

(ii) The span of S, denoted ⟨S⟩ is the set of all linear combinations of elements in S. This
is a subspace of V .

(iii) S ⊂ V is said to be linearly independent if whenever

c1s1 + c2s2 + · · ·+ cksk = 0

where each ci ∈ K and the si are distinct elements of S, we have that each ci = 0. We
regard an empty set of vectors as linearly independent.

Definition 2.20. For V a vector space, a subset B ⊂ V is a basis for V if

1. ⟨B⟩ = V,

2. B is linearly independent.

Remark 2.21. It is easily checked that B ⊂ V is a basis for V if and only if B is a minimal
spanning set for V (i.e., ⟨B⟩ = V and there is no proper subset B′ ⊂ B such that ⟨B′⟩ = V ).

For a finite set S, let |S| be the number of elements in S. If S is infinite, we write |S| =∞.

Proposition 2.22. If B and B′ are both bases for a vector space V , then |B| = |B′|.

Proposition 2.23. Every vector space has a basis.

Definition 2.24.

(i) The dimension of a vector space V , denoted dimV , is |B|, where B is any basis of V .
(In view of Proposition 2.22, this definition is well formed.)

(ii) We say a vector space V is finite-dimensional if dim(V ) <∞.

Definition 2.25. Given a linear map T : V → W , we call dim(imT ) the rank of T , and
we call dim(kerT ) the nullity. We denote them as rank(T ) and nullity(T ), respectively.

Theorem 2.26 (Rank-Nullity Theorem). If f : V → W is a linear map and V is finite-
dimensional, then

dimV = rank(T ) + nullity(T ).
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2.3 Homology with Coefficients

While simplicial and singular homology are prerequisites for this course, I am aware that
some students have not seen homology with field coefficients. The definition is just a minor
variant of the definition for integer coefficients, where instead of constructing chain groups
whose elements are Z-linear combinations, we construct chain vector spaces, whose elements
are K-linear combinations, where K is a field. In what follows, I’ll review (singular and
simplicial) homology with coefficients in a commutative ring R. This generalizes both the
familiar case of Z coefficients and the case field coefficients.

2.3.1 Simplicial Complexes and Simplicial Maps

Definition 2.27. An (abstract) simplicial complex X is a set of non-empty finite sets such
that if σ ∈ X and τ ⊂ σ is non-empty, then τ ⊂ X. We call X0 :=

⋃
σ∈X σ the vertex set of

X, and we call an element of X with j + 1 elements a j-simplex.

We usually write a simplex {x0, . . . , xk} as [x0, . . . , xk]. Each simplicial complex X has a
geometric realization |X|, which is a (triangulated) topological space; I’ll assume you have
seen this and not write down the definition.

Example 2.28. X = {[0], [1], [0, 1]} is a simplicial complex whose geometric realization is
homeomorphic to the unit interval [0, 1]. Its vertex set X0 is {0, 1}.

Definition 2.29. Given simplicial complexes X, Y , a simplicial map f : X → Y is a function
f : X0 → Y0 such that f(σ) ∈ Y whenever σ ∈ X.

A simplicial map f : X → Y induces a continuous map between the the geometric
realizations |f | : |X| → |Y |.

Example 2.30. Consider the simplicial complexes

X = {[0], [1], [2], [0, 1], [1, 2], [0, 2], [0, 1, 2]}
Y = {[0], [1], [2], [0, 1], [1, 2], [0, 2]}.

Then X0 = Y0 = {0, 1, 2}. The identity map on this set is a simplicial map from Y → X, but
not from X to Y .

Definition 2.31. A subcomplex of a simplicial complex Y is a simplicial complex X which is
a subset of Y . If X is a subcomplex of Y , we write X ⊂ Y .

For any simplicial complexes X ⊂ Y , X0 ⊂ Y0 and the inclusion X0 ↪→ Y0 is a simplicial
map. This is by far the most important simplicial map in TDA.
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2.3.2 Homology with Coefficients

Definition 2.32 (Module of formal linear combinations). Given a set S and a commutative
ring R, a formal R-linear combination of elements of S is an expression of the form

c1s1 + c2s2 + · · ·+ cksk,

where k ∈ N, each ci ∈ R and each si ∈ S. (Formally, this can be defined as a function
S → R with finite support.) The set of all formal R-linear combinations of elements of S
forms an R-module C(S), with the obvious definitions of addition and scalar multiplication.

Note that C(S) is an abelian group when R = Z, and C(S) is an R-vector space when R
is a field.

Definition 2.33. A chain complex C is a sequence of R-modules and homomorphisms

· · · f2−→ C1
f1−→ C0

f0−→ 0

such that for each i ≥ 0, fi ◦ fi+1 = 0.

Example 2.34 (Simplicial Chain Complex). Given a simplicial complex X and i ∈ N, let
Xi denote the set of i-simplices of X.1 We call C(Xi) the ith chain module of X, and denote
it as Ci(X).

Choose a total order on X0 and for i ≥ 1, consider the simplex σ = [x0, . . . , xi] ∈ Xi,
where xj < xk for all j < k. For j ∈ {0, . . . , i}, let ∂(σ, j) ∈ Xi−1 denote the (i− 1)-simplex
obtained by removing xj from σ. Define

∂i(σ) =
i∑

j=0

(−1)j∂(σ, j) ∈ Ci−1(X).

We then define a homomorphism ∂i : Ci(X)→ Ci−1(X), called the ith simplicial boundary
map of X, by

∂i(c1σ1 + c2σ2 + · · ·+ ciσk) = c1∂i(σ1) + c2∂i(σ2) + · · ·+ ck∂i(σk).

The maps (∂i)i∈N assemble into a chain complex

C(X) : · · · ∂2−→ C1(X)
∂1−→ C0(X)

∂0−→ 0.

Example 2.35 (Singular Chain Complex). Given a topological space Y and i ∈ N, a singular
i-simplex of Y is a continuous map σ : ∆i → Y , where ∆i denotes the standard i-simplex.
Letting Yi denote the set of singular i-simplices, we call C(Yi) the ith singular chain module
Y , and denote it as Ci(Y ).

1This specializes to a definition of X0 different than the one above. But there is a canonical bijection
between the two definitions of X0, which justifies the slight abuse of notation.
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Given a singular i-simplex σ and j ∈ {0, . . . , i}, let ∂(∆i, j) denote the jth face of ∆i, and
let ∂(σ, j) denote the restriction of σ to ∂(∆i, j). By identifying ∂(∆i, j) with a copy of ∆i−1,
we regard ∂(σ, j) as a singular (i− 1)-simplex. Given this definition of ∂(σ, j), the definition
of a simplicial boundary map ∂j given in Example 2.34 adapts immediately to a definition
of a a singular boundary map ∂i : Ci(Y )→ Ci−1(Y ), and the maps (∂i)i∈N assemble into a
chain complex C(Y ).

Given any chain complex

C : · · · f2−→ C1
f1−→ C0

f0−→ 0

and i ∈ N, we define an R-module HiC := ker(fj)/ im(fj+1), the ith homology module of C.
For X a simplicial complex, we call HiC(X) the ith simplicial homology of X (with

coefficients in R), and denote it as Hi(X). Similarly, for Y a topological space, we call
HiC(Y ) the ith singular homology of Y , and denote it as Hi(Y ).

2.3.3 Functoriality of Homology

Definition 2.36. Given two chain complexes C and D, a chain map f : C → D is a choice
of homomorphisms (fi : Ci → Di)i∈N making the following diagram commute

· · · C2 C1 C0 0

· · · D2 D1 D0 0

f2 f1 f0

We will see in Example 3.35 that a chain map is an example of a natural transformation.

Examples 2.37.

(i) A simplicial map g : X → Y induces a homomorphism gi : Ci(X) → Ci(Y ) for each
i ∈ N, given by

gi

 ∑
i∈{1,...,k}

 ciσi =
k∑

i∈{1,...,k}
dim(gi(σi))=i

cigi(σi).

These homomorphisms assemble into a chain map g# : C(X)→ C(Y ).

(ii) Similarly, a continuous map of topological spaces g : X → Y induces a homomorphism
of singular chain modules gi : Ci(X)→ Ci(Y ) for each i ∈ N, given by

gi(c1σ1 + c2σ2 + · · ·+ ckσk) = c1g ◦ σ1 + c2g ◦ σ2 + · · ·+ ckg ◦ σk.

As above, these homomorphisms assemble into a chain map g# : C(X)→ C(Y ).
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Exercise 2.38. Check that in both of the examples above, we do obtain well defined chain
maps, i.e., that the maps gi commute with the boundary maps in the required way.

Exercise 2.39.

(i) Consider R-modules M ′ ⊂M and N ′ ⊂ N . Given a homomorphism f : M → N such
that f(M ′) ⊂ N ′, show that f induces a homomorphism f : M/M ′ → N/N ′, given by
f [m] = [f(m)]. (In particular, check that this definition does not depend on the choice
of representative of the equivalence class [m], hence is well defined.)

(ii) Show that for any chain map f : C → D and i ∈ N, the map fi induces a homomorphism
H(fi) : Hi(C)→ Hi(D), given by H(fi)[x] = [fi(x)].

It follows from Examples 2.37 and Exercise 2.39 (ii) that each simplicial map f : X → Y
induces a homomorphism of simplicial homology modules Hi(f) : Hi(X) → Hi(Y ) and,
similarly, that each continuous map topological spaces induces a homomorphism of singular
homology modules. Moreover, it is straightforward to check the following:

Proposition 2.40. The induced maps on simplicial and singular homology both satisfy the
following “functoriality properties” (see Definition 3.19):

1. Hi(g ◦ f) = Hi(g) ◦Hi(f),
2. Hi(IdX) = IdHi(X).

The result of Exercise 2.39 (ii) is also used to establish a relationship between simplicial
and singular homology: Given a simplicial complex X and an arbitrary total order on X0,
there is a natural way to identify each i-simplex σ with a singular i-simplex in |X|. This
identification yields a chain map f : C(X)→ C(|X|).

Proposition 2.41 ([109, Theorem 2.27]). For each i, the induced map H(f) : Hi(X) →
Hi(|X|) is an isomorphism.

Remark 2.42. In the case that the R ring of coefficients is a field, the rank of the linear
map Hi(f) : Hi(X)→ Hi(Y ) induced by an inclusion of topological spaces f : X ↪→ Y has a
simple intuitive interpretation: RankHi(f) is the number of i-dimensional holes that do not
“close up” in Y .

Example 2.43. For D = {x ∈ R2 | ∥x∥ ≤ 1}, let X = D × S1, and consider the map
j : S1 ↪→ X given j(y) = (y, (1, 0)). Then dimH1(S

1) = dimH1(X) = 1, but RankH1(j) = 0.

Remark 2.44. The relationship between homology with coefficients in an arbitrary commu-
tative ring R and homology with Z-coefficients is given by the universal coefficient theorem
which (in brief) says that homology with R coefficients is obtained from homology with Z
coefficients by tensoring with the field K; see Hatcher’s text [109] for a proper discussion of
this. In particular, homology with Z-coefficients determines homology R-coefficients, but not
necessarily the other way around. I believe that we will not need directly use the universal
coefficient theorem for homology in this course, but it is nevertheless good to understand
this. (We might have occasion to consider the universal coefficient theorem for cohomology.)
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3 Posets and Basic Category Theory

Commutative diagrams (especially those indexed by posets) play an important role in
topological data analysis. Category theory provides a very convenient language for this, and
we will often use that language in this course. We will cover the very basics here, namely the
definitions of category, functor, and natural transformation; other aspects of category theory
will be discussed later in the course, as needed. For more detail on category theory, Emily
Riehl’s book [142] and Steve Awodey’s book [8] are good options.

3.1 Posets

Definition 3.1. A partially ordered set (or poset for short) is a set P with a binary relation
≤ (the partial order) such that

• x ≤ x for all x ∈ P (reflexivity),
• x ≤ y and y ≤ x implies x = y (anti-symmetry),
• x ≤ y and y ≤ z implies x < z (transitivity).

If x ≤ y or y ≤ x we say x and y are comparable.

Definition 3.2. A totally ordered set is a poset in which each pair of elements is comparable.

Example 3.3. N, Z, and R are all totally ordered sets.

Example 3.4. Given a set S and P any set of subsets of S, the inclusion relation on P is
a partial order. A special case of this that arises frequently in mathematics (and in TDA
theory) is to take P to the set of open sets of a topological space S.

Definition 3.5 (Product Poset). Given posets P and Q, we define a partial order on P ×Q
by taking (p, q) ≤ (p′, q′) iff p ≤ p′ and q ≤ q′. In particular, this gives a partial order on P 2,
and more generally, on P n for any n ≥ 0 by induction, since P n ∼= P n−1 × P .

Example 3.6. A subset of a poset inherits the structure of a poset.

For x, y elements of a poset P , we write x < y to mean x ≤ y and x ̸= y.

Definition 3.7 (Hasse Diagram). A relation x < y in a poset is minimal if it admits no
factorization x < z < y. We can visually represent a finite poset P as a finite directed graph
with vertices P and edge (x, y) for each minimal relation x < y. This is called the Hasse
diagram. More generally, if P is a poset such that every relation x < y is generated by
minimal ones under transitive closure (i.e., there exists a finite string of minimal relations
x < x1 < x2 < · · · < xk < y), then we define the Hasse diagram in the same way.
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Example 3.8. The Hasse diagram of {0, 1, 2} is

• → • → •.

The Hasse diagram of {0, 1}2 is
• •

• •
The Hasse diagram of N is

• → • → • → · · ·

The Hasse diagram of N2 is

...
...

...

• • • · · ·

• • • · · ·

• • • · · ·

Definition 3.9 (Opposite Poset). Given a poset P with partial order <, the opposite partial
order > is defined by x > y iff y < x. We denote the resulting poset by P op.

Example 3.10. The Hasse diagram of Nop is

• ← • ← • ← · · ·

Definition 3.11. Given posets P and Q, a function f : P → Q is called a poset map if x ≤ y
implies f(x) ≤ f(y). A poset map is an isomorphism if it is a bijection and its inverse is also
a poset map.

Exercise 3.12. Draw the Hasse diagrams of all the posets (up to isomorphism) with 4
elements.

3.2 Size Issues in Set Theory

The core definitions of category theory, given below, touch on some foundational issues in set
theory. We say a few brief words about this.

The standard axioms of set theory, are the ZFC axioms (the Zermelo-Fraenkel axioms,
together with the axiom of choice). These provide a formal foundation for most of modern
mathematics. In fact, there are multiple different models of set theory satisfying the ZFC
axioms; see, e.g., [154, Section 5] for a lucid discussion of this point.
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In the ZFC framework, one cannot define a set of all sets: It follows from a generalization
of Cantor’s diagonalization argument that for any set S and 2S its power set, there is no
surjection S → 2S. If there existed a set of all sets S, then since each element of 2S is a set,
we would have 2S ⊂ S, a contradiction. Similar kinds of arguments show that, e.g., there is
no set of all groups or set of all topological spaces.

Nevertheless, in category theory one does want to have something like a set of all sets.
While there are various ways to arrange for this, the key idea is to introduce a distinction
between sets and larger objects, called a (proper) classes. By viewing the collection of all
sets as a proper class rather than a set, we avoid the paradoxical notion of a set of all sets.
When we don’t want to worry about the formal distinction between a set and a class, we use
the word collection.

Moreover, one would like to work with proper classes exactly as if they were themselves
sets, as this is both convenient and intuitive. There is a popular formalism which allows for
this, which I now briefly outline. One introduces a sequence of successively larger models of
ZFC set theory Vκ1 , Vκ2 , Vκ3 , . . . called (Grothendiek) universes, such that a proper class of
the universe Vκi is a set in Vκj for all j > i. Thus, in this formalism, we can always treat a
proper class as a set by moving to a higher universe. For a fixed choice of i, we call the sets
of Vκi small sets, and the sets of Vκi+1

large sets. The existence of Grothendiek universes does
not follow from the usual ZFC axioms, but is ensured by an additional axiom, the existence
of inaccessible cardinals, which (loosely speaking) posits the existence of certain really big
sets.

If the above seems confusing, don’t worry; to start learning category theory, and to
understand the material of this course, it suffices to keep the following in mind:

• To avoid paradoxes, we distinguish between ordinary sets and larger entities called
proper classes or large sets.

• The collection of all sets is a proper class, as is, e.g., the collection of all groups or all
topological spaces.

• There is formal justification working with these larger entities as if they themselves
were sets.

A thorough discussion of size issues in set theory and category theory can be found in
Mike Shulman’s overview “Set Theory for Category Theory” [154].

3.3 Basic Category Theory

3.3.1 Categories

Definition 3.13. A category C consists of:

• a collection of objects Ob C,
• a set of morphisms hom(x, y) for every x, y ∈ Ob C,2

2It is common to avoid specifying that hom(X,Y ) is a set, allowing for the possibility that it is a proper
class; one sees both definitions in the literature. However, in practice hom(X,Y ) is typically a set.
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• a composition rule for morphisms, which for each f ∈ hom(x, y) and g ∈ hom(y, z),
specifies a morphism g ◦ f ∈ hom(x, z).

• for each x ∈ Ob C, a distinguished morphism Idx ∈ hom(x, x), called the identity.

These must satisfy the following axioms:

• composition is associative, i.e., (f ◦ g) ◦ h = f ◦ (g ◦ h),
• For f ∈ hom(x, y), we have f ◦ Idx = f and Idy ◦f = f .

Generalizing the usual notation for functions, if f ∈ hom(x, y) we write f : x→ y. We denote
the collection of all morphism in C as hom(C).

Examples 3.14.

(i) The category Set has objects all sets and morphisms all functions.

(ii) The category Top has objects all topological spaces and morphisms all continuous
maps.

(iii) The category Simp has objects all simplicial complexes and morphisms all simplicial
maps.

(iv) The category Grp has objects all groups and morphisms all group homomorphisms.

(v) For a fixed commutative ring R, the category R-Mod has objects all R-modules and
morphisms all homomorphisms. In the case that R is a field, this is simply the category
of R-vector spaces and linear maps, which we denote by Vec.

(vi) The category Pst has objects all posets and morphisms all poset maps.

Definition 3.15. A category C is said to be thin if for all x, y ∈ ObC, hom(x, y) contains
at most one element. Note that in a thin category, the composition operation is trivial, in
the sense that it is completely specified by the objects.

Example 3.16 (Poset Categories). We can regard a poset P as a thin category:

• The objects are elements of P ,
• if x ≤ y then hom(x, y) has one element,
• if x ̸≤ y then hom(x, y) is empty.

Definition 3.17. A category C is said to be small if Ob C is a set, rather than a proper class.
For example, Set, Top, and Grp are not small, but any poset category is small.

Definition 3.18. A morphism f : x→ y in a category C is called an isomorphism if f has
an inverse, i.e., a morphism g : y → x with

g ◦ f = Idx and f ◦ g = Idy .

If there exists an isomorphism f : x→ y, we write x ∼= y.
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3.3.2 Functors

Definition 3.19 (Functor). Given categories C and D, a functor F : C → D consists of:

• A choice of object F (x) ∈ ObD for every x ∈ ObC,
• A choice morphism F (γ) ∈ hom(F (x), F (y)) for each γ ∈ hom(x, y)

such that

• F respects the composition operation in C and D, i.e., F (f ◦ g) = F (f) ◦ F (g),
• F maps identity morphisms to identity morphisms, i.e., F (Idx) = IdF (x) for all x ∈ ObC.

For x ∈ Ob C, we often write F (x) as Fx and for γ ∈ hom(C), we write F (γ) as Fγ. If C
is thin, then a morphism γ : x→ y in hom(C) is completely determined by x and y, and we
typically write F (γ) as Fx,y.

Examples 3.20. It follows from Proposition 2.40 that for any i ≥ 0 and commutative ring
R,

(i) ith simplicial homology with coefficients in R is a functor Hi : Simp→ R-Mod,

(ii) singular homology with coefficients in R is a functor Hi : Top→ R-Mod,

Example 3.21. Geometric realization is a functor | · | : Simp→ Top.

Example 3.22. Let D be the Hasse diagram of a poset P . Then a commutative diagrams of
topological spaces indexed by D can be identified with a functor F : P → Top. For example,
a commutative diagram of spaces

A B

C D

f

i

g h

can be identified with a functor

{0, 1} × {0, 1} → Top .

Similarly, a diagram of spaces

F1 → F2 → F3 → · · ·

can be identified with a functor F : N→ Top.
In fact, this generalizes immediately to commutative diagrams valued in any category C.

In this sense, functors (vastly) generalize commutative diagrams.

Example 3.23. A functor F : R→ Top is the data of a topological space Fr for each r and
continuous maps Fr,s for each r ≤ s such that
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• Fr,r = IdFr for all r,
• Fs,t ◦ Fr,s = Fr,t for all r ≤ s ≤ t.

Definition 3.24 (Category of Small Categories). Cat denotes the category whose objects
are small categories and whose morphisms are functors. (Composition of functors and identity
functors are defined in the obvious way.)

Definition 3.25. A functor F : C → D is called

1. faithful if for each x, y ∈ ObC, the function hom(x, y)→ hom(Fx, Fy) given by F is
injective.

2. full if for each x, y ∈ ObC, the same function is surjective.
3. fully faithful if it is both full and faithful.

Exercise 3.26. Show that a fully faithful functor F is essentially injective, i.e., Fx ∼= Fy
implies x ∼= y.

Informally, a concrete category is a category whose underlying objects are sets and whose
morphisms are functions (not necessarily all functions). Here is a formal definition:

Definition 3.27. A concrete category C is a category equipped with a faithful functor
S : C → Set.

Example 3.28. Set, Top, Vec, and Pst are all concrete categories.

Definition 3.29. Given objects A,B in a concrete category C, we say A is a subobject of B,
and write A ⊂ B, if S(A) ⊂ S(B).

The definition of a subobject extends immediately to functors valued in a concrete category,
as follows:

Definition 3.30 (Subfunctors).

(i) Given functors F,G : C → Set, we say F is a subfunctor (or subobject) of G if Fx ⊂ Gx

for all x ∈ ObC and Fγ(z) = Gγ(z) for all γ : x→ y in hom(C) and z ∈ Fx.
(ii) More generally, for functors F,G : C → D, where D is a concrete category, we say F is

a subfunctor (or subobject) of G if SF is a subfunctor of SG.

Exercise 3.31. Recall the construction of a category from a poset given in Example 3.16.
Show that this extends to a fully faithful functor Pst→ Cat.
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3.3.3 Natural Transformations

Definition 3.32 (Natural Transformations). Given two functors F,G : C → D, a natural
transformation N : F → G is a choice of morphism Nx : Fx → Gx for each x ∈ Ob C such
that these morphisms commute with those C and D. That is, for all morphisms γ : x→ y in
hom(C), the following diagram commutes:

Fx Fy

Gx Gy

F (γ)

Nx Ny

G(γ)

If each of the morphisms Nx is an isomorphism, we call N a natural isomorphism

Simple examples such as the following are especially useful for getting an intuition for
natural transformations.

Example 3.33. A natural transformation N : F → G of functors F,G : N→ Top is exactly
the data of continuous maps

(Ni : Fi → Gi)i∈N

making the following diagram commute:

F : F0 F1 F2 · · ·

G : G0 G1 G2 · · ·

N0 N1 N2

Exercise 3.34. As in the previous example, a natural transformation between functors
F,G : {0, 1} × {0, 1} → Top can be thought of as a commutative diagram. Sketch this
diagram.

Example 3.35. A chain complex is a functor F : Nop → R-Mod such that Fi,i−1 ◦Fi+1,i = 0
for all i, and and a chain map is a natural transformation of chain complexes.

Example 3.36. In Section 2.3.3 we constructed, for any simplicial complex X and i ∈ N,
an isomorphism from the simplicial homology module Hi(X) to the singular homology
module Hi(|X|). In fact, it can be checked the collection of all such isomorphisms as X
varies defines a natural isomorphism from the functor Hi : Simp→ R-Mod to the functor
Hi ◦ | · | : Simp→ R-Mod.

Definition 3.37 (Functor Categories). For categories C and D with C small, the functor
category Fun(C,D) (sometimes also denoted DC), has as its objects the functors C → D and
its morphisms the natural transformations.

Exercise 3.38. Show that a morphism in DC is an isomorphism if and only if it is a natural
isomorphism in the sense defined above.
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Definition 3.39. A functor F : C → D is called an isomorphism if it is invertible, i.e., there
exists G : D → D such that G ◦ F = IdC and F ◦G = IdD.

Note if C and D are small, then F then this definition of isomorphism is the same as the
definition of isomorphism in Cat.

One often would like to say that two categories have essentially the same structure. For
this, the notion of isomorphism is sometimes too rigid. The following weaker notion is more
common:

Definition 3.40 (Equivalence of categories). A functor F : C → D is an equivalence if there
exists a functor G : D → C such that

G ◦ F ∼= IdC and F ◦G ∼= IdD .

Example 3.41. The category whose objects are integers and whose morphisms n→ m are
the m×n matrices with coefficients in R is equivalent to, but not isomorphic to, the category
of finite dimensional R-vector spaces.

Example 3.42. R is isomorphic, hence equivalent, to Rop. For example, we may take the
isomorphism to send x to −x for all x.

Proposition 3.43. A functor F : C → D is an equivalence if and only if

1. It is fully faithful,
2. F is essentially surjective, i.e. for every y ∈ ObD, there is some x ∈ Ob C with Fx ∼= y.

For a proof, see, e.g., [142]. The “if” direction of the statement requires the axiom of
choice.

Exercise 3.44.

(a) Describe all functors Z→ Z,
(b) Describe all equivalences Z→ Z,
(b) Describe all equivalences Z→ Zop.

Exercise 3.45. Show that for any category C, there exists an equivalent category D in which
no two distinct objects are isomorphic.

Exercise 3.46.

(i) Give an explicit description of all categories (up to isomorphism) with four morphisms
such that | hom(x, x)| ≤ 2 for all x ∈ ObC.

(ii) Which of these categories are equivalent to each other?

(iii) Which are (isomorphic to) poset categories?
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4 1-Parameter Persistent Homology

The basic persistent homology pipeline is summarized by the following diagram:

Data → Filtration
Homology−−−−−→ Persistence Module

Structure Theorem−−−−−−−−−−→ Barcode

To explain this, we start by defining filtrations, persistence modules, and barcodes.

4.1 Filtrations and Persistence Modules

Let T be a totally ordered set (e.g., N, Z, or R).

Definition 4.1. A (T -indexed) filtration is a functor F : T → Top such that the map Fr,s is
a subspace inclusion whenever r ≤ s.

Definition 4.2. Fixing a field K, a (T -indexed) persistence module M is a functor F : T →
Vec, where as above, Vec denotes the category of K-vector spaces.

Thus, in view of Example 3.22, we think of an N-indexed filtration F as a diagram of
topological spaces of the form

F0 ↪→ F1 ↪→ F2 ↪→ F3 → · · · ,

and we think of an N-indexed persistence module M as a diagram of K-vector spaces

M1 →M2 →M3 →M3 →M4 → · · · .

4.1.1 Barcodes and Persistence Diagrams

Definition 4.3.

(i) An interval (in T ) is a non-empty subset I ⊂ T such that if x < y < z ∈ T and x, y ∈ I,
then y ∈ I.

(ii) A barcode (in T ) is a multiset of intervals. (Informally, a multiset is a set where elements
are allowed to have multiple copies; it is not difficult to make this formal.)

Remark 4.4. Most often in TDA, we consider one of the following two special cases:

1. T ⊂ Z
2. T = R or T = [0,∞), and each interval in the barcode is of the form [a, b), where
a < b ∈ T ∪ {∞},

In either of the cases, each interval in the barcode is completely described by a pair in
(a, b) ∈ T × (T ∪ {∞}). The barcode is therefore equivalent to a collection of such pairs,
which we call a persistence diagram. It is sometimes convenient to visualize a barcode via its
associated persistence diagram. add figure.
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4.2 The Persistent Homology Pipeline

As indicated by the diagram at the beginning of this section, the persistent homology pipeline
proceeds in three steps:

1. Given a data set X, we construct a filtration F from X,
2. We post-compose F with the homology functor Hi (with field coefficients) to obtain a

persistence module HiF . Concretely, this means applying homology to each space and
each inclusion map in the filtration.

3. As explained below, a structure theorem for persistence modules yields a barcode BM
as an isomorphism invariant of a persistence module M , under very mild assumptions
on M . Thus for each i ≥ 0, we obtain a barcode BHiF := Bi(F ).

In what follows, we state the structure theorem, and then introduce several important
ways of constructing a filtration from data.

4.3 Structure Theorem for Persistence Modules

4.3.1 Direct Sums

Recall that the (external) direct sum V ⊕W of K-vector spaces V and W is defined as a set
by

V ⊕W = {(v, w) | v ∈ V, w ∈ W},

with addition and scalar multiplication defined coordinate-wise. Moreover, given linear maps
f : V → V ′ and g : W → W ′, we define

f ⊕ g : V ⊕W → V ′ ⊕W ′

by f ⊕ g(v, w) = (f(v), g(w)). For any category C and functors F1, F2 : I → Vec, these
definitions induce a definition of direct sum F 1⊕F 2 : C → Vec. This generalizes immediately
to a definition of a direct sum F 1⊕· · ·⊕F k of any finite sequence of functors F 1, F 2, · · · , F k :
C → Vec.

The definition in fact generalizes further to a direct sum
⊕

s∈S F
s of any collection of

functors (F s : C → Vec)s∈S indexed by a set S.3 To give this generalization, we first define
direct sums of arbitrary collections of vector spaces, as follows: Given a set S and collection
of K-vector spaces (V s)s∈S indexed by S, we define their direct sum to be the set of all formal
linear combinations of elements of these vector spaces, i.e.,⊕
s∈S

V s = {c1v1+c2v2+· · ·+ckvk | ci ∈ K, vi ∈ ⊔V s, distinct vi are contained in distinct Vs}.

3The construction we give is not a strict generalization of the one above, but rather a generalization up to
isomorphism. In fact, direct sums are categorical coproducts [142], and therefore this is a generalization up
to a unique isomorphism commuting with the inclusions of the summands into the direct sum.
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In the same way as above, this definition extends to a definition of direct sum of a collection
of functors (F s : C → Vec)s∈S.

There is a closely related notion of internal direct sum: We say a vector space V is the
(internal) direct sum of a set of subspaces (W s)s∈S, if ⟨

⋃
s∈SW

s⟩ = V and for each t ∈ S, W t

has trivial intersection with ⟨
⋃
s∈S\{t}W

s⟩. Similarly, we say F : C → Vec is the (internal)

direct sum of a set of subfunctors (Gs)s∈S if Fx is the internal direct sum of (Gs
x)s∈S for all

x ∈ ObC; see Definition 3.30 for the definition of a subfunctor.
The following relates internal and external direct sums:

Proposition 4.5. Consider a functor F : C → Vec.

(i) If F is the internal direct sum of subfunctors (F s)s∈S, then F ∼=
⊕

s∈S F
s.

(ii) Conversely, if F ∼=
⊕

s∈S G
s, then there exist subfunctors (F s)s∈S of F whose internal

direct sum is F , such that F s ∼= Gs for all s ∈ S.

The definition of a direct sum indexed by a set extends without difficulty to multisets; we
omit the details.

4.3.2 Interval Modules

Definition 4.6. For T a totally ordered set and I ⊂ T an interval, define the interval module
KI to be the persistence module such that

KI
r =

{
K if r ∈ I,
0 otherwise.

KI
r,s =

{
IdK if r ≤ s ∈ I,
0 otherwise.

For example, an interval module over N looks like this:

0→ · · · → 0→ k
idk−→ · · · idk−→ k → 0→ · · ·

or like this:
0→ · · · → 0→ k

idk−→ · · · idk−→ k → k → · · ·

4.3.3 Structure Theorem

We say a persistence module M is pointwise finite dimensional (p.f.d.) if dim(Mr) <∞ for
all r.

Theorem 4.7 (Structure of Persistence Modules). For any totally ordered set T and p.f.d.
T -indexed persistence module M , there exists a unique multiset of intervals BM such that

M ∼=
⊕
I∈BM

KI .
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We call BM the barcode of M .

Remark 4.8 (History). The case where T finite is a slight variant of the (very standard)
structure theorem for finitely generated modules over a PID, which can be found in any
undergraduate abstract algebra textbook. This case also readily implies the result for finitely
generated Z-indexed persistence modules or finitely presented R-indexed persistence modules;
this will be explained in later sections.

The theorem was proven for T = Z by Webb [170], and for T = R (or more generally, for
any T with a countable subset which is dense in the order topology on R) by Crawley-Boevey
[78]. The full result (i.e., for arbitrary totally ordered sets) was proven by Botnan and
Crawley-Boevey [34].

Later, we will prove the structure theorem in the special case of finitely generated
Z-indexed modules.

Definition 4.9 (Essentially Discrete Persistence Modules). We say that an R-indexed
persistence module M is essentially discrete if there is a monotonic injection j : Z ↪→ R such
that

1. lim
z→±∞

j(z) = ±∞,

2. for all z ∈ Z and r ≤ s ∈ [j(z), j(z + 1)), Mr,s is an isomorphism.

The persistence modules we encounter in practice are often essentially discrete. We’ll
discuss this further later. In a future

version of
the notes,
I might re-
place essen-
tially dis-
crete with
the more re-
strictive no-
tion of “es-
sentially fi-
nite”, where
one also re-
quires that
Mj(z) = 0
for all z
sufficiently
small, and
Mj(z),j(z+1)

is an isomor-
phism for z
sufficiently
large. This
aligns more
tightly with
the examples
given later.

Exercise 4.10. Show that the intervals in the barcode of an essentially discrete persistence
module have one for the following two forms:

1. [a, b), for a < b ∈ R ∪ {∞}.
2. (−∞, b), for b ∈ R ∪ {∞}.

[Hint: Given an essentially discrete persistence module M , first apply the structure theorem
to the Z-indexed module M ◦j. Use the resulting decomposition to construct a decomposition
of M . You may find Proposition 4.5 to be helpful.]

4.3.4 Interpretation of the Structure Theorem

We now observe that Theorem 4.7 has a simple interpretation in terms of bases of vector
spaces:

Definition 4.11. A compatible set of bases for a persistence module M : T → Vec is a
choice of basis Br for each vector space Mr such that for all r ≤ s ∈ T ,

1. if b ∈ Br, then either Mr,s(b) ∈ Bs or Mr,s(b) = 0,
2. if b, b′ ∈ Br and Mr,s(b) ̸= 0, then Mr,s(b) ̸= Mr,s(b

′).
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Example 4.12. Let K = R and consider M : {0, 1, 2} → Vec, given as follows:

R

(
1
0

)
−−→ R2 (0 1)

−−−−→ R

The following is a compatible set of bases for M : B0 = B2 = {1}, B1 = {(1, 0), (0, 1)}.

Example 4.13. Let K = R and consider M : {0, 1, 2, 3} → Vec, given as follows:

R

(
1
1

)
−−→ R2

(
−1 1
−1 1

)
−−−−−→ R2 (0 1)

−−−−→ R

The following is a compatible set of bases for M : B0 = {1}, B1 = {(1, 1), (−1, 1)}, B2 =
{(1, 0), (2, 2)}, B3 = {2},

Any compatible set of bases (Br)r∈T for a persistence module M : T → Vec has an
associated barcode. To define this, let ∼ denote the equivalence relation on the disjoint union
⊔r∈TBr given as follows: For b ∈ Br and b′ ∈ Bs, we take b ∼ b′ if and only if either (r ≤ s
and Mr,s(b) = b′) or (s ≤ r and Ms,r(b

′) = b). It is easy to check that each equivalence class
of ∼ is an interval in T . Define π : ⊔r∈TBr → T by taking π(b) = r whenever b ∈ Br. We
define the barcode associated to the compatible basis to be

{π(C) | C an equivalence class of ∼}.

Exercise 4.14. Explicitly describe the equivalence classes of ∼ for the compatible set of
bases given in Examples 4.12 and 4.13.

It can be checked that the following is equivalent to Theorem 4.7:

Corollary 4.15.

(i) A compatible basis exists for any p.f.d. persistence module M : T → Vec,

(ii) All compatible bases for M induce the same barcode.

Exercise 4.16. Consider the filtration F : {0, 1} → Simp where

F0 = {[a], [b], [c], [d], [a, b], [b, c], [c, d], [a, d], [a, c]},
F1 = F0 ∪ {[a, b, c], [e], [a, e], [b, e]}.

(i) Sketch F .
(ii) Explicitly compute a set of compatible bases for H1F .

(iii) What is BH1F ?
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4.4 Vectorizations of Barcodes

Many standard machine learning and statistical methods require as input data which lives in
a vector space (often, a finite dimensional vector space or a Hilbert space).

We would like to feed barcodes as input to such methods, but, the space of barcodes does
not have a natural vector space structure. Nevertheless there are many reasonable ways to
define a map from a space of barcodes to a vector space. We call such a map a vectorization
of persistent homology. Vectorization of persistent homology has become a big business
in recent years, with more than a dozen papers proposing different vectorizations [5]. The
papers describing the most popular of the vectorization methods are some of the most highly
cited papers in TDA, reflecting the fact that these vectorizations are widely used in practice.

As a representative example, I will briefly introduce just one of the earliest and most
popular vectorization methods, persistence landscapes. later also

add some-
thing about
persistence
images.

4.4.1 Persistence Landscapes

Persistence landscapes, introduced by Bubenik [42, 43], were (to the best of my knowledge)
the first non-trivial vectorization of barcodes to appear in the TDA literature. They remain
one of the most popular vectorizations.

Definition 4.17. Given a barcode B and k ≥ 0, we define λkB : R → R, the kth persistent
landscape of B, by

λkB(t) = sup {h ≥ 0 | [t− h, t+ h] ⊂ I for at least k distinct intervals in I ∈ B}.

Persistence landscapes have a nice geometric interpretation in terms of persistence dia-
grams. Suppose we are a persistence diagram D , e.g., as shown below:

B

A

C

We rotate the whole diagram clockwise 45 degrees, so that the diagonal line y = x becomes a
horizontal line. Then, for each point x in the diagram, we draw an iscoles triangle whose
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right angle x and whose hypotenuse lies on the horizontal line.

B
A

C

The first persistence landscape is the function R→ R whose graph is the upper envelope of
the resulting arrangement of line segments.

B
A

C

The second persistence landscape is the function R→ R whose graph is the upper envelope
of what remains after removing the upper envelope.

B
A

C

The third and higher persistence landscapes are defined analogously; they are identically 0 in
our example.

The persistence landscapes have several nice properties, which have contributed to their
popularity [42]:

1. Distinct barcodes have distinct landscapes,

2. the landscapes are stable in a reasonable sense,

3. they are computable.

The landscapes are functions from R → R, so live in an infinite-dimensional vector space.
But (according to a quite standard idea in scientific computing) by restricting the domain of
these functions to a fixed finite grid, we can approximate them by finite dimensional vectors.

5 Filtrations in Topological Data Analysis

The flexibility of persistent homology lies in the way we construct a filtration from data.
The data one starts with can take any one of several forms, and there are numerous ways of
associating a filtration to data. In this section, we will discuss a few of the most common
constructions. Later, we will consider multiparameter generalizations of all of the constructions
discussed here.
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5.1 Nerves and Čech Filtrations

To start, we recall the definition of the offset (i.e., union-of-balls) filtration from the introduc-
tion:

Definition 5.1. For X ⊂ Rn, the offset filtration of X is the [0,∞)-indexed filtration given
by

O(X)r =
⋃
x∈X

B(x, r),

where B(x, r) ⊂ Rn is the closed ball of radius r centered at x.

In the computational setting, it is difficult to work directly with the union-of-balls filtration,
so we instead work with an a topologically equivalent simplicial filtration. There are several
options for this [12]; we will consider the two most common ones in TDA, the Čech filtration
and the Delaunay filtration (also known as the α-filtration). In the next three subsections, we
introducte and study these filtrations, discussing some important related ideas from homotopy
theory along the way.

Definition 5.2 (Nerve). Given a collection of sets U , the nerve of U is the abstract simplicial
complex

N (U) = {σ ⊂ U finite | ∩S∈σS ̸= ∅}.

Thus, N (U) has

• a 0-simplex for every S ∈ U ,
• a 1-simplex for every {S, T} ⊂ U with S ∩ T ̸= ∅,
• a 2-simplex for every {R,S, T} with R ∩ S ∩ T ̸= ∅,
• and so on for higher simplices.

Example 5.3. Let U = {A := [0, 2], B := [1, 4], C := [3, 5]}. Then N (U) is the following
simplicial complex {[A], [B], [C], [A,B], [B,C]}, whose geometric realization is • − • − •, and
hence homeomorphic to the unit interval [0, 1].

Definition 5.4 (Čech Filtration). For X ⊂ Rn finite and r ∈ [0,∞), we define the Čech
complex

Čech(X)r := N ({B(x, r)}x∈X).

If r ≤ s, we have a natural identification of Čech(X)r with a subcomplex of Čech(X)s.
Varying r thus yields a filtration Čech(X) : [0,∞)→ Top, the Čech filtration of X.

The following result plays an important role in TDA:

Proposition 5.5. For any finite metric space X and i ≥ 0, Hi Čech(X) ∼= HiO(X).

Proposition 5.5 is an immediate consequence of a version of the persistent nerve theorem;
see Corollary 5.26.
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5.2 The (Persistent) Nerve Theorem

The nerve theorem, a fundamental result in algebraic topology, guarantees that under suitable
assumptions, the nerve of a cover of a topological space X is homotopy equivalent to X. The
theorem dates back to work of Borsuk, Weil, and Leray in the late 40’s and early 50’s, and
comes in several different flavors. In TDA we need a functorial version of the nerve theorem,
known as the persistent nerve theorem. Below, we will give two versions of the persistent nerve
theorem that are particularly useful in TDA. To state these, we will first introduce a suitable
analogue of homotopy equivalence for Top-valued functors. For a thorough treatment of the
(persistent) nerve theorem, including a history of various versions, see the recent article [14].

5.2.1 Nerve Theorems for Spaces

We first present two versions of the nerve theorem for topological spaces.

Definition 5.6.

(i) A cover of a topological space X is a collection of subspaces of X whose union is X.
(ii) We say a cover U is good if all intersections of finitely many elements of U are contractible

or empty. (In particular, each element of U must be empty or contractible.)

To state our first version of the nerve theorem, we will need the following technical
definition:

Definition 5.7 (Paracompactness).

(i) A cover U of X is locally finite if for every x ∈ X, there exists an open neighborhood
of x which intersects finitely many elements of U .

(ii) A refinement of a cover U of X is a cover V of X such that every element of V is
contained in an element of U .

(iii) A topological space X is said to be paracompact if every open cover of X has a locally
finite refinement.

Remark 5.8. Any metrizable topological space is paracompact; hence paracompactness is a
very mild condition.

Example 5.9. Let U = {(−n, n) ⊂ R | n ∈ {1, 2, 3, . . .}}. U is an open cover of R. It is not
locally finite. U ′ = {(n, n+ 2) | n ∈ Z} is a locally finite refinement of U .

The following version of the nerve theorem can be found in [109, Section 4.G], among
other places. I believe it is originally due to Weil [172].

Theorem 5.10 (Nerve Theorem for Open Covers). If U is a good open cover of a paracompact
space X, then X ≃ N(U).
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Outline of proof of Theorem 5.10. We outline the proof appearing in [109, Section 4.G]. For
our purposes, the most important aspect of this proof is that one constructs a third space Z
and homotopy equivalences

X
≃←− Z

≃−→ N (U).

The proof touches on some fundamental constructions in homotopy theory, like nerves of
categories and homotopy colimits.

• Consider the poset P whose objects are finite subsets of U , with σ ≤ τ ∈ P if and only
if σ ⊂ τ . We have a functor F : P op → Top given by

F{S1,...,Sk} = S1 ∩ S2 ∩ · · · ∩ Sk,

with the internal morphisms of F the inclusions.
• We also have a functor G : P op → Top with Gp = ∗ for all p ∈ P op and a natural

transformation f : F → G.
• For any small category C, there is a functor

hcl : Fun(C,Top)→ Top,

the homotopy colimit functor, which is very useful in algebraic topology. Roughly,
hcl(F ) of a diagram F is a space obtained by gluing together thickened versions of the
spaces Fx.

• hcl has the property that given functors A,B : C → Top and η : A → B a natural
transformation with ηx a homotopy equivalence for all x ∈ Ob C, we have that the
induced map hcl(A)→ hcl(B) is a homotopy equivalence. In particular, using the fact
that the cover U is good, we obtain a homotopy equivalence hcl(F )→ hcl(G).

• Also, hcl(G) is homeomorphic to |N (U)|.
• We have also natural map hcl(F )→ X. Paracompact spaces admit partitions of unity.

Using this, we show that this map is a homotopy equivalence.

Putting this all together, and taking Z = hcl(F ), we have our desired pair of homotopy
equivalences

X
≃←− Z

≃−→ N (U).

We next consider a variant of the nerve theorem for closed, convex covers, apparently due
to Leray [124].

Theorem 5.11 (Nerve Theorem for Closed, Convex Covers). If U is a finite, closed, convex
cover of X ⊂ Rn, then X ≃ N (U).

Sketch of Proof, following [14]. Chose a point in each finite intersection of elements of U .
By convexity, these choices extend to a map Γ : |N (U)+| → X, where the (·)+ denotes
barycentric subdivision. For any simplicial complex S, |S+| ∼= |S|, so it suffices to show that
Γ is a homotopy equivalence. To do this, one constructs a homotopy inverse of Γ using a
partition of unity on a thickening of U . The verification that the maps are homotopy inverses
is technical.
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Remark 5.12. There is also a version of the nerve theorem whose hypothesis and conclusion
concern homology, rather than homotopy.

5.2.2 Weak Equivalence of Diagrams of Spaces

In what follows, we sometimes refer to a functor C → Top, where C is any category, as a
diagram of spaces ; this is standard terminology.

The natural generalization of the notion of homeomorphism to diagrams of spaces is a
natural isomorphism. But what is the natural analogue of homotopy equivalence for diagrams
of spaces? There is a standard answer, given by the following definition (however, see
Remark 5.19):

Definition 5.13. Given a category C and F,G : C → Top,

(i) A natural transformation η : F → G is called an objectwise homotopy equivalence if
ηx is a homotopy equivalence for each x ∈ Ob C. We sometimes denote an objectwise
homotopy equivalence from F to G by F

≃−→ G.

(ii) We say F and G are weakly equivalent, and write F ≃ G, if they are connected by a
zigzag of of objectwise homotopy equivalences, as follows:

W1 · · · Wn

F W2 Wn−1 G.

≃ ≃ ≃ ≃ ≃ ≃

Exercise 5.14. Prove that if F and G are weakly equivalent, then HiF ∼= HiG for all i ≥ 0.

In algebraic topology (and in TDA), one wants to regard diagrams F,G :→ Top as
“topologically equivalent” if there exists an objectwise homotopy equivalence from F to G.
Moreover, one wants a symmetric and transitive notion of equivalence. This partially explains
why Definition 5.13 (ii) is a natural notion of topological equivalence of diagrams of spaces.

5.2.3 Discussion of Weak Equivalence (Optional)

In this subsection, we will seek to understand Definition 5.13 more fully. For the reader
uninterested in the finer points of the homotopy theory of diagrams of spaces, and willing to
accept as given that Definition 5.13 provides an appropriate notion of topological equivalence
for diagrams of spaces, this subsection can be skipped.

First, we point out that there is a more direct way of generalizing homotopy equivalence
to diagrams of spaces, given in the next definition. But outside of special cases, this turns
out to be too rigid.

Definition 5.15 (Homotopy equivalence of diagrams of spaces). Given a category C and
F,G : C → Top,
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(i) Let F × I : C → Top be defined by

(F × I)x = Fx × I

for x ∈ Ob C and
(F × I)γ(z, t) = (Fγ(z), t)

for γ ∈ hom(C). For t ∈ I, we have natural “inclusion” transformation int : F → F × I
given by intx(z) = (z, t) for x ∈ ObC.

(ii) A homotopy between natural transformations η, µ : F → G is a natural transformation
h : F × I → G such that h ◦ in0 = η and h ◦ in1 = µ. If there exists such h, then we
write η ∼ µ.

(iii) A natural transformation η : F → G is called a homotopy equivalence if there exists a
natural transformation µ : G→ F such that µ ◦ η ∼ IdF and η ◦ µ ∼ IdG.

It is easily checked that any homotopy equivalence F → G is an objectwise homotopy
equivalence, but the converse is not true in general, as the following exercsise shows:

Exercise 5.16. Let P denote the poset {0, 1} and consider the functors F,G : P → Top
given as follows:

F = {0, 1} ↪→ [0, 1] G = {0, 1} 0−→ {0}.

That is, F0 = {0, 1}, F1 = [0, 1], F0≤1 is the inclusion, G0 = {0, 1}, G1 = {0}, and G0≤1 = 0.

(i) Give an objectwise homotopy equivalence F → G. (This is easy).

(ii) Show that there is no objectwise homotopy equivalence G→ F , and hence no homotopy
equivalence between F and G.

NOTE: {0, 1} is appearing in this exercise both as a poset and as a discrete topological space.

Remark 5.17. If F,G : C → Top are cofibrant diagrams of spaces4 then any objectwise
homotopy equivalence η : F → G is indeed a homotopy equivalence. For special choices of
C, e.g., C = {0, . . . , k}, C = N, C-indexed filtrations are often cofibrant [158, Theorem 6.36].
For example, any simplicial filtration N → Simp is cofibrant. But for other choices of C,
like C = N2 or C = R, cofibrancy is a strong assumption often not satisfied by filtrations
encountered in the wild.

Remark 5.18. It can be shown that the zigzag in Definition 5.13 can always be chosen to
be of the form F ← Z → G, i.e., to contain only one intermediate diagram. Here is the
idea, in brief: Starting with an arbitrary zigzag connecting F and G, we replace all of the
intermediate diagrams in the zigzag with cofibrant ones, using a standard construction. Then
the objectwise homotopy equivalences can be reversed and composed to get a shorter zigzag.

4The definition of a cofibrant diagram of spaces is beyond the scope of this course; see, e.g., [158, Chapter
6] and [88].
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Remark 5.19. As a technical aside, we note that in homotopy theory (and in a few places
in TDA), it is often much more convenient to work with a variant of Definition 5.13 where
we replace homotopy equivalence with weak homotopy equivalence.5 We will not worry about
this in the first part of our our course. In any case, in TDA one works primarily with spaces
having the homotopy type of a CW-complex (a mild condition), and for such spaces of
homotopy equivalence and weak homotopy equivalence coincide, by Whitehead’s theorem
[109].

Remark 5.20. There is another simple way one might (naively) define “topological equiv-
alence” of diagrams of topological spaces. We describe this and briefly explain why it is
unsatisfactory: Define the homotopy category of topological spaces ho(Top) to be the cat-
egory whose objects are topological spaces and whose morphisms are homotopy classes of
continuous maps. Note that we have a functor π : Top→ ho(Top) sending each map to its
homotopy class. Thus, a functor F : C → Top induces a functor πF valued in the homotopy
category.

Naively, one might wish to regard functors F,G : C → Top as being topologically
equivalent if πF and πG are isomorphic in the functor category (ho(Top))C. However, this
notion of topological equivalence turns out to be too coarse: It turns out that when we pass
from a diagram of spaces F to its associated diagram πF in the homotopy category, we may
discard important higher order homotopy-theoretic information, and this makes ho(Top)-
valued diagrams difficult to work with, e.g., when developing homotopy invariant-notions of
limit and colimit. To elaborate, in the homotopy theory of diagrams, one wants to consider
not only homotopy commutative diagrams, but to also keep track of explicit choices of the
homotopies, of homotopies between the homotopies and so on. Such data is lost when we
pass to diagrams valued in the homotopy category. Thus, the homotopy theory of diagrams
of spaces is developed in a way which avoids working with ho(Top)C-valued diagrams.

See Section 15.2 (and in particular Remarks 15.13) for additional discussion of ho(Top)C-
valued diagrams.

5.2.4 Persistent Nerve Theorem

Recall the definition of a subfunctor from Definition 3.30.

Definition 5.21 (Cover of a functor). For C a category and F : C → Top a functor, a cover
of F is a set U of subfunctors from C to Top such that for each x ∈ Ob C,

Ux := {Gx | G ∈ U}

is a cover of Fx.

5A continuous map f : X → Y is a weak homotopy equivalence if for all i ≥ 0, the induced map
πi(f) : πi(X)→ πi(Y ) on homotopy groups (sets in the case i = 0) is an isomorphism.
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Definition 5.22. Any cover U of a functor F : C → Top has an associated “nerve diagram”
N(U) : C → Simp, where

N (U)c = N (Uc)

for each c ∈ Ob C. The internal maps of N (U) are defined in the obvious way, i.e., as follows:
Given x ∈ ObC and S ∈ U with Sx ≠ ∅ and γ : x→ y ∈ hom(C), the internal map N(U)γ
sends Sx to Sy; note that Sy is non-empty, since if z ∈ Sx then Sγ(z) ∈ Sy.

Exercise 5.23. Check that N(U)γ is indeed a simplicial map.

Note that by construction, N(U)γ is injective (i.e., injective on vertex sets), regardless of
whether Fγ is an injection.

Remark 5.24. For intuition about Definition 5.22, it may help to consider the special
case where all of the internal maps in F are subspace inclusions. Then the same is true
for the internal maps in each element of the cover U . In this case, for any morphism
γ : x→ y in hom(C) and G ∈ U , we have Gx ⊂ Gy. Therefore, given G1, . . . , Gk ∈ U with
G1
x ∩G2

x ∩Gk
x ̸= ∅, we must also have G1

y ∩G2
y ∩Gk

y ̸= ∅. Thus, we have a natural injection
N (U)x → N (U)y.

In most if not all applications of Definition 5.22 in TDA, the internal maps of F are
indeed inclusions. That said, as we have seen, the definition makes perfect sense without this
assumption.

Theorem 5.25 (Persistent Nerve Theorem). Suppose that U is a cover of a functor F : C →
Top and that either

1. each Fr is paracompact and each Ur is good and open, or
2. each Fr ⊂ Rn and each Ur is finite, closed, and convex.

Then F and N (U) are weakly equivalent.

The version for open covers first appeared in [38, 65], while the version for closed covers
first appeared (in this level of generality) in [14], though it was previously “TDA folklore.”

Idea of proof. The proof of the nerve theorem for open covers (Theorem 5.10) yields homotopy
equivalences

Fr
≃←− Zr

≃−→ N (Ur).

These maps are natural with respect r, i.e., they commute with the inclusion maps in the
filtration, i.e., they determine objectwise homotopy equivalences.

F
≃←− Z

≃−→ N (U) (1)

Moreover, in the setting of closed, convex covers (Theorem 5.11), the natural transformations
Eq. (1) are defined in the same way. The second natural transformation is again an objectwise
homotopy equivalence, by the same argument as in the case of open covers. The proof of
Theorem 5.11 sketched above adapts to show that the first natural transformation is also an
objectwise homotopy equivalence; see [14, Theorem 3.9].
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Here is our first main application of the persistent nerve theorem:

Corollary 5.26. For any finite X ⊂ Rn, Čech(X) and O(X) are weakly equivalent.

Proof. Let U = {O({x})}x∈X . Then U is a finite, closed, convex cover of O(X). It follows
from Theorem 5.25 that N (U) and O(X) are weakly equivalent. But N (U) = Čech(X),
which gives the result.

Note that Proposition 5.5 follows immediately from Corollary 5.26 and Remark 5.18.

Exercise 5.27. Show that for X = {0, 1} ⊂ R there is no objectwise homotopy equivalence
O(X)→ Čech(X).

Exercise 5.28. By adapting Exercise 5.27, give an example of a pair of filtrations X, Y
which are weakly equivalent, but for which there exists no objectwise homotopy equivalence
from either one to the other.

Exercise 5.29. Let X = {(0, 0), (2, 0), (0, 1)}. Give an explicit expression for Čech(X), i.e.,
specify Čech(X)r for each r ≥ 0.

Exercise 5.30. Using Corollary 5.26, prove that for HiO(X) is essentially discrete for any
finite X ⊂ Rn and i ≥ 0.

5.3 The Delaunay Filtration

As a combinatorial model of the union-of-balls filtration, the Čech filtration is very natural,
and it is an important object of study in the TDA theory. But as discussed above, the large
size of the Čech filtration makes it difficult to handle computationally. This motivates the
consideration of the Delaunay filtration Del(P ), a subfiltration of Čech(P ) which is smaller
and (for generic point clouds P ⊂ Rn) has simplices in dimension at most n. A more detailed
introduction to these ideas can be found in [89] or [31].

First, we need the classical definition of the Delaunay Triangulation. change P ’s
to X’s for
consistency
with the
above.

5.3.1 Voronoi diagrams and Delaunay Triangulations

Definition 5.31 (Voronoi Diagram). For P ⊂ Rn finite and p ∈ P , the Voronoi cell of p is
the set

V (p) := {x ∈ Rn | ∥p− x∥ ≤ ∥q − x∥ for all q ∈ P \ {p}}.

V (p) is the common solution to a finite set of affine inequalities, so is a convex polytope. Let

V (P ) = {V (p) | p ∈ P}.

V (P ) is a closed, convex cover of the plane, whose elements intersect only along their
boundaries. The intersections of cells in V (P ) determine a polyhedral cell decomposition of
Rn which is called the Voronoi diagram of P .

48



Figure 5.1: The Voronoi diagram (red) and Delauany triangulation (black) of 10 points in R2.

Definition 5.32. N (V (P )) is called the Delaunay triangulation of P . We will denote it as
D(P )

Remark 5.33. Given our definition of the nerve, elements of D(P ) are formally defined as
sets of Voronoi cells, but we often identify each such set with the corresponding subset of P .

Definition 5.34. P ⊂ Rn is said to be in (spherical) general position if for any 1 ≤ k < d,
no subset of k + 3 points in P lies on a k-dimensional sphere.

Remark 5.35. Given a finite point set P ⊂ Rn, we can always put P in general position by an
arbitrarily small perturbation of the points. Algorithms and theory of Delaunay triangulations
usually assume that the points are in general position. (Such genericity assumptions are very
common in computational geometry.)

Definition 5.36. The convex hull of X ⊂ Rn, denoted Conv(X), is the smallest convex set
containing X.

Example 5.37. The convex hull of non-colinear points in Rn is a triangle.

We have defined D(X) as an abstract simplicial complex, but the following standard
computational geometry result provides a natural embedding of its geometric realization into
Rn.

Theorem 5.38. For P ⊂ Rn in general position, the collection

{Conv(σ) | σ ∈ D(P )}

is an embedding of |D(X)| of into Rn with support Conv(X).
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We will not prove Theorem 5.38, but we’ll say a few words about the standard proof:
The proof involves a trick of lifting P into Rn+1 via the map ϕ : Rn → Rn+1 given by
ϕ(x) = (x, ∥x∥2); one shows that the bottom part of the boundary of Conv(σ(P )) (called the
lower hull) projects down to D(P ); Theorem 5.38 follows from this. See, e.g., [31].

Exercise 5.39. Show that for P ⊂ Rn not necessarily generic, D(P ) can have as many as
2|P | − 1 simplices. (HINT: assume that P ⊂ Sn−1.)

5.3.2 The Delaunay Filtration

Using a construction due to Edelsbrunner, Kirkpatrick, and Seidel [90], we now endow the
Delaunay triangulation with the structure of a filtration. For P ⊂ Rn and p ∈ P , let

V (p)r = V (p) ∩B(p, r),

and let
V (P )r := {V (p)r | p ∈ P}.

Definition 5.40. The Delaunay complex (or α-complex) at radius r is the simplicial complex

Del(P )r := N (Vor(P )r).

Allowing r to vary, we obtain the Delaunay filtration Del(P ) : [0,∞)→ Simp.

Note that for sufficiently large r, Del(P )r = D(P ).

Proposition 5.41. For any finite P ⊂ Rd,

Del(P ) ≃ O(P ) ≃ Čech(P ).

In particular, all three filtrations have the same barcodes.

Proof. For all r ∈ [0,∞),

O(P )r =
⋃
p∈P

B(p, r) =
⋃
p∈P

V (p)r

because every point in B(p, r) =
⋃
p∈P must be closest to some point of P . That is, V (P )r

is a cover of O(P )r. Moreover, each element of this cover is closed and convex, because it
is an intersection of a closed ball, which is convex, and a Voronoi region, which is closed
and convex. In fact, the covers {V (P )r}r∈[0,∞) define a cover of O(P ) which satisfies the
assumptions of the persistent nerve theorem for closed convex sets (Theorem 5.25). This
gives Del(P ) ≃ S↑(dP ).

The second weak equivalence follows from Corollary 5.26.

Exercise 5.42. For each of the following sets X ⊂ R2, sketch Vor(X) and give explicit
expressions for Del(X).

a. X = {(0, 0), (2, 0), (0, 1)},
b. X = {(0, 0), (1, 0), (2, 0), (1, 1)}.
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5.4 The Vietoris-Rips Filtration

For data embedded high dimensions or metric data not equipped with an embedding into a
nice space, it is often preferable to work with the Vietoris-Rips (VR) filtration:

Definition 5.43 (Vietoris-Rips Filtration). For P a metric space and r ∈ [0,∞), let N(P )r
denote the neighborhood graph of P , i.e., the graph with vertex set P and an edge connecting
p, q ∈ P if and only if d(p, q) ≤ 2r. We take Rips(P )r to be the clique complex on N(P )r,
i.e., the unique largest simplicial complex with 1-skeleton N(P )r.

Exercise 5.44. For P ⊂ Rn, clearly Čech(P )r ⊂ Rips(P )r for all r ∈ [0,∞). Perform the
easy check that conversely, Rips(P )r ⊂ Čech(P )2r.

Remark 5.45. A shown in [81, Theorem 2.5], the result of the exercise can be improved to
Rips(P )r ⊂ Čech(P )√2r. In fact they give a stronger, dimension-dependent bound.

Exercise 5.46. Give explicit expressions for the Vietoris-Rips filtrations of the following
sets X ⊂ R2:

a. X = {(0, 0), (2, 0), (0, 1)},
b. X = {(0, 0), (2, 0), (0, 2), (2, 2)}.

5.5 Size and Computation of Čech, Delaunay, and Rips Filtrations

Let F : [0,∞)→ Top be a simplicial filtration such that Fr = Fmax for all r sufficiently large,
and assume that Fmax is finite. Moreover, assume F is essentially discrete (Definition 4.9).
(Each of the simplicial filtrations we have considered has these properties.) We may then
represent F on a computer by storing Fmax along with the minimum index at which each
σ ∈ Fmax first appears in F . Computing F means to compute this data. We define the size
of F to be the number of simplices in Fmax.

5.5.1 Size

In what follows, let F denote either the Čech filtration of P ⊂ Rn finite, or the Rips filtration
of a finite metric space P . Fmax is the (|P | − 1)-dimensional abstract simplicial complex
with vertices P . Thus Fmax has 2|P | − 1 simplices, i.e., one for every non-empty subset of
P . In practice, we only compute the barcodes of HiF for i small (usually i ≤ 2), and for
this, we only need to compute the (i + 1)-skeleton of F . The (i + 1)-skeleton of Fmax has
size

( |P |
i+2

)
= Θ(|P |i+2). So for example, if we are interested in the barcode of H1F , we need to

consider Θ(|P |3) simplices.
It can be shown that for P ⊂ Rn in general position, the Delaunay triangulation D(P )

has size at most O(|P |⌈n/2⌉) [150]. Since Del(P )max = D(P ), the same size bound holds for
Del(P ). Thus, in the important special case P ⊂ R3, Del(P ) has size O(|P |)2, whereas the
3-skeleton of Čech(P ) has size Θ(|P |4).

For data drawn uniformly at random from a cube or ball in Rn with n fixed, D(P ) has
expected linear size [87, 107]. See also [32, 91, 141] for related results.
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5.5.2 Computation

Barcodes of Delaunay and Rips filtrations are computed frequently in TDA. There is also
code available for computing Čech complexes, e.g., in GUDHI [161], though Čech filtrations
are used less frequently in practical computations; for low dimensional data, computing a
Delaunay filtration is more efficient and yields the same barcodes, while for high-dimensional
data or non-Euclidean data, a Rips filtration is often used instead.

Vietoris-Rips Computation of the full Vietoris-Rips filtration Rips(X) (or its k-skeleton)
is not too exciting from an algorithmic perspective; it can be done in time linear in the size
of Rips(X) using a recursive algorithm [175]. We give a version of this in Algorithms 1 and 2.
To keep notation simple, we assume that the set underlying X is {1, 2, . . . , |X|}. Computing
the persistent homology of Rips(X) is a more interesting algorithmic problem than simply
computing Rips(X); several very nice and non-obvious ideas have been developed for this
which have had an enormous impact on practical efficiency [11]. We will discuss computation
of persistent homology later.

Algorithm 1 ComputeRips

function ComputeRips(D, k) ▷ .
▷ D is the distance matrix of X; k is the dimension of Rips(X) to be returned
simplexList ← {}
▷ D, k and simplexList are global variables; they can be accessed by the function AppendUpperCofaces
for each vertex j ∈ {1, . . . , |X|} in decreasing order do

AppendUpperCofaces([j],0)

return simplexList

Algorithm 2 AppendUpperCofaces

function AppendUpperCofaces(σ, r)
Append (σ, r) to SimplexList
if dim(σ) < k then

for each vertex j > max(σ) do
τ ← σ ∪ {j}
r′ ← max(r,maxi∈σ Dj,i)
AppendUpperCofaces(τ ,r’)

Čech The main algorithmic problem in computing Čech(X) is to compute the minimum
radius rσ at which each simplex σ ∈ Čech(P )max first appears in the filtration. Note that
rσ is the radius of the smallest ball in Rn containing σ. The computation of such smallest
enclosing balls is a non-trivial but standard problem in computational geometry, and there
are efficient solutions [97, 102, 173]. GUDHI computes Čech filtrations using the approach of
[102].
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Delaunay The first step in the computation of Del(P ) is the computation of the Delaunay
triangulation. Computation of Delaunay triangulations is an interesting topic in computational
geometry with an extensive literature dating back to the early days of the subject. One
standard approach [33, 39, 169] is to compute the Delaunay triangulation incrementally,
adding in one point at a time and updating the Delaunay triangulation after each new point
is added. A randomized version of this approach requires expected time |P |⌈n

2
⌉ log |P | [98], find a more

specific refer-
ence for this

but on certain randomly sampled data, the complexity improves to |P | log |P | [32]. D(P )
can also be computed by casting the problem as a convex hull computation; this requires
time O(|P |⌈n/2⌉ + n log n), which asymptotically matches the worst-case size of the output.
As these bounds may suggest, computing Delaunay triangulations (filtrations) is practical in
low dimensions, but impractical in high dimensions.

Once D(P ) is computed, we must compute the radius of appearance of each of the
simplices in Del(P ). Contrary to what one might naively expect, the radius rσ at which a
simplex σ appears in Del(P ) is not the necessarily the radius of the smallest ball enclosing σ,
as for the Čech filtration. Rather, rσ is the radius of the smallest closed ball B containing σ
on its boundary whose interior is empty.

Exercise 5.47. Consider P = {(−3, 0), (3, 0), (0, 1)}.

(i) What is the radius at which the edge [(−3, 0), (3, 0)] appears in Čech(P )?
(ii) What is the radius at which the edge [(−3, 0), (3, 0)] appears in Del(P )?

In the special case that B is known a priori to be the smallest ball containing σ on its
boundary, computing rσ amounts to solving a small linear system of equations, which can be
done very efficiently. But in fact, if we process the simplicies of Del(P ) in order of decreasing
dimension, then it suffices to only consider such special cases. (This is not obvious!) An
algorithm for computing the radii following this idea is given in [31], though some details
are omitted there. One can fill in the details by observing that the function σ 7→ rσ is a
generalized discrete Morse function whose gradient has a simple, explicit description [12,
Theorem 4.6].

5.5.3 Strategies for Managing the Size of Rips and Čech Filtrations

As we have seen, the low-dimensional skeleta for Rips and Čech can be quite large for data
sets of realistic size. There are several practical strategies for managing this size, which we
mention very briefly here:

• Truncate the filtration F , i.e., only consider the filtration up to some fixed value of the
scale parameter r. In some applications, one has a priori knowledge of which maximum
scale is appropriate, but in others one does not, so this is not always viable.

• Compute a smaller filtration with approximately the same persistent homology. There
are a number of strategies for this, and there is a large literature on the subject
[38, 40, 41, 67–69, 84, 85, 153].
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• To conserve memory, compute persistent homology in a way which avoids storing the
full filtration in memory. This idea was introduced in [11] for computing the persistent
homology of Rips filtrations, and is very effective. (To my knowledge, the approach has
not been used for the computation of Čech filtrations, and it might not be practical for
this.)

5.6 Sublevel/Superlevel Filtrations

Definition 5.48 (Sublevel/Superlevel filtration). For any topological space W , totally ordered
set T , and function γ : W → T , define the sublevel filtration S↑(γ) to be the T -indexed
filtration given by

S↑(γ)r = {x ∈ W | γ(x) ≤ r}.
Note that for this construction, it is not necessary that γ be continuous.

Symmetrically, we define the superlevel filtration S↓(γ) to be the T op-indexed filtration
given by

S↓(γ)r = {x ∈ W | γ(x) ≥ r}.
The persistence barcodes of the sublevel and superlevel filtration do not determine each other.
However, we will see later that the sublevel filtration and superlevel filtration have a common
2-parameter refinement called the interlevel filtration.6

Example 5.49. The offset filtration of a finite point cloud is a sublevel filtration: Given
P ⊂ Rn (not necessarily finite), let dP : Rn → [0,∞) be the distance to P , i.e.,

dP (x) = inf
y∈P
∥x− y∥.

If P is finite, then S↑(dP ) = O(P ).

Example 5.50. It is easily checked that (viewed as top-valued functors) the Čech, Delaunay,
and Rips filtrations are sublevel filtrations, for discontinuous γ.

Example 5.51 (Density functions). The following example of a superlevel filtration is
important in the statistical foundations of TDA. Let W be a Riemannian manifold (e.g. Rn,
or a unit sphere), and γ : W → R be a probability density function. S↓(γ) topologically
encodes information about the modes (i.e. basins of attraction under gradient flow) of the
density function, as well as other higher-order topological features; see the discussion of Morse
theory below.

Example 5.52 (Images). We can think of a 2-D greyscale image as a function γ : [0, 1]2 → R.
(We may have discontinuities because the image is pixelated.) We can then consider the
filtrations S↑(γ) and S↓(γ). It is common to use the these to study spaces of images, e.g. in
a machine learning context.

6As shown in [50], a refinement of sublevel persistent homology called extended persistence does determine
the superlevel version, and conversely, provided we consider barcodes in all multiple homology degrees.
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5.6.1 Morse Theory

Morse theory, which establishes a connection between the critical points of a smooth function
γ and the topology of its sublevel sets, is a fundamental tool in topology, arising in many
places. In TDA, the connection between persistence and Morse theory is very important to
how specialists in the field think about persistence. In particular, Morse theory yields useful
structural information about the barcodes of S↑(γ) under the relatively mild assumption that
γ is Morse function. Moreover, the intuition about persistence provided by Morse theory is
useful even in settings where one’s filtration does not arise from a Morse function.

We therefore now provide a brief overview of Morse theory and its consequences for
persistence theory; for a complete treatment of Morse theory, the classic reference is [133].

Smooth Manifolds We begin by developing some standard language about smooth
manifolds. (Aside from this short section on Morse theory, the formal language of smooth
manifolds will not be used much elsewhere in the course, and this can be skimmed on a first
reading.)

Recall that an n-dimensional manifold is a topological space M7 which is locally homeo-
morphic to Rn. That is, for each x ∈M , there exists an open neighborhood U of M and a
homeomorphism ϕU from U to an open ball in Rn. We call ϕU a (coordinate) chart ; if x ∈ U
we say ϕU is a chart of x. An atlas is a collection of charts for M whose domains cover M .

Definition 5.53. A smooth manifold is a manifold M together with a maximal atlas AM
such that for any ϕU , ϕV ∈ AM , the map ϕV ◦ ϕ−1

U : ϕV (U ∩ V )→ ϕU (U ∩ V ) is smooth (i.e.,
infinitely differentiable).

A function γ : M → N between smooth manifolds is said to be smooth if for all ϕU ∈ AM
and ϕV ∈ AN , the map

ϕV ◦ γ ◦ ϕ−1
U : ϕ−1

U (f−1(V ) ∩ U)→ Rn

is a smooth map.

Remark 5.54. Any n-dimensional manifold embeds into R2m, by Whitney’s embedding
theorem.

Consider a manifold M and a smooth function γ : M → R. x ∈M called a critical point
of γ (and γ(x) a called critical value) if in any coordinate chart, the of Jacobian γ at x
vanishes, i.e., for any chart ϕU of x, all partial derivatives of f ◦ϕ−1

U are 0 at ϕU (x). (Whether
the Jacobian vanishes is independent of the choice of ϕU .)

7To rule out pathological examples, one requires that M is Hausdorff and second-countable (i.e., there is a
countable basis for its topology).
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Morse Theory We say a critical point x is degenerate if for any coordinate chart ϕU of x,
the Hessian H of γ ◦ ϕU at ϕU(x) (i.e., matrix of second derivative) is singular. Otherwise,
we say x is non-degenerate. H is a symmetric matrix so is diagonalizable. H is singular if
and only if 0 is an eigenvalue of H, so if x is non-degenerate, then 0 is not an eigenvalue of
H. If x is non-degenerate, we call the number of negative eigenvalues of H the index of x
and denote it as i(x). (One can check that the index of the x is independent of the choice of
coordinate chart ϕU .)

Definition 5.55. A smooth function γ : M → R on compact manifold M is called a Morse
function if each of its critical points is non-degenerate.

Example 5.56. The classical example of a Morse function is the height function γ on the
torus S1 × S1, where the torus is embedded in R3 as shown in the figure below. There
are four critical points which we label in order of increasing height as w, x, y, z. These are,
respectively, the bottom of the torus, the bottom of the hole in the middle that you can see
through, the top of that hole, and the top of the torus. We have i(w) = 0, i(x) = i(y) = 1,
i(z) = 2.

would help
to annotate
the figure,
and also to
have more
pictures.

The following result tells us that an arbitrarily small perturbation of a smooth function
on M is a Morse function.

Proposition 5.57. Let C∞(M) denote the set of smooth R-valued functions on M , with the
compact-open topology. The Morse functions form an open, dense subset of C∞(M).

The next result tells us that in suitable coordinates around a critical point, a Morse
function looks like a multivariate quadratic.

Proposition 5.58 (Morse Lemma). If γ is Morse, then for any critical point x of γ, there
exists a coordinate chart ϕU of x such that

γ ◦ ϕ−1
U (y1, y) = y21 + y22 + · · ·+ y2i(x) − y2i(x)+1 − · · · − y2n

and ϕ−1
U (x) = 0.

Exercise 5.59. Show that a Morse function has finitely many critical points. [Hint: using
the above proposition, construct an open cover of M such that each set in the cover contains
at most one critical point.]
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The following is (a version of) the main result of classical Morse theory. It describes the
topology of a compact manifold M in terms of the critical points of a Morse function on M .

Theorem 5.60. Let γ : M → R be a Morse function, and consider a < b ∈ R.

(i) If γ has no critical values in the interval (a, b], then the inclusion S↑(γ)a ↪→ S↑(γ)b is a
homotopy equivalence.

(ii) If (a, b] contains a single critical value with corresponding critical points x1, . . . xk, then
S↑(γ)b is homotopy equivalent to a subspace obtained by attaching an i(xj)-cell to S↑(γ)a
for each xj.

For simplicity, we state the Morse inequalities, an important corollary of Theorem 5.60,
just for homology with coefficients in a field.

Corollary 5.61 (Morse Inequalities). For any Morse function γ : M → R and a ∈ R,
dimHi(S↑(γ)a) is at most the number of index-i critical points in S↑(γ)a.

Together with is Exercise 5.59, the corollary implies in particular that Hi(S↑(γ)) is
p.f.d. and therefore has a well-defined barcode. In fact, Corollary 5.61, Theorem 5.60 and
Exercise 4.10 imply the following stronger statement:

Corollary 5.62. If γ : M → R is a Morse function, then

(i) For i ≥ 0, BiS↑(γ) consists of finitely many intervals, each of the form [a, b) where
b ∈ R ∪ {∞},

(ii) dim(Hi(M)) is the number of infinte-length intervals in BiS↑(γ),

(iii) The left and right endpoints of an interval of BiS↑(γ) are the values of critical points of
index i and i+ 1, respectively.

Remark 5.63. In fact, there is an illuminating refinement of Theorem 5.60 which says that
γ induces a canonical CW decomposition of M , with one i-cell for each critical point of
index i. The i-cells are the unstable manifolds of the critical points. (We will not define an
unstable manifold here, but informally this is the set of points in M obtained by running
negative gradient flow in each of the negative eigen-directions of the Hessian of a critical
point.) In fact, S↑(γ) is weakly equivalent to a cellular filtration of this CW complex, where
a cell appears in the filtration at its corresponding critical value.

Add in a discussion of applications of persistent homology, following what was discussed in class.

57



6 Algebraic Aspects of Persistence Modules

To continue with our treatment of 1-parameter persistent homology, the next topics I want
to cover are the proof of the structure theorem (in the finitely generated Z-indexed case) and
the standard algorithm for computing persistent homology.

But to treat these topics properly, we need to develop some algebraic language for working
with persistence modules. And since the language we need for the 1-parameter setting is
more or less the same as the language we will need for more general settings, it will be most
efficient to develop this language in the general setting right now. So we will now introduce
generalized persistence modules and some of the basic formalism for working with them, then
return for some time to the 1-parameter setting.

First, it will be convenient to extend the definition of a persistence module, as follows:

Definition 6.1. Given a poset P , a (P -indexed) persistence module is a functor M : P → Vec.
We sometimes also call M a P -persistence module. In the case that

P = T1 × T2 × · · · × Tn

where each Ti is a totally ordered set, we also call M an n-parameter (or multiparameter)
persistence module. A 2-parameter persistence module is called a bipersistence module.

For example, an N2-persistence module is a diagram of vector spaces of the form:

...
...

...

M0,2 M1,2 M2,2 · · ·

M0,1 M1,1 M2,1 · · ·

M0,0 M1,0 M2,0 · · ·

We are mainly interested in multiparameter parameter persistence modules in this course,
but in what follows with often work with persistence modules indexed by an arbitrary poset
P , since many of the ideas extend immediately to this setting, and the extra generality will
sometimes be useful to us. The reader is encouraged to keep the case of Zn-indexed modules
foremost in mind.

6.1 Persistence Modules as d-Graded Modules

As the name persistence module suggests, these objects can be interpreted as modules in the
sense of abstract algebra, and sometimes this perspective is very useful. The interpretation is
simplest in certain special cases, e.g., for Nn-, Zn-, and Rn-persistence modules. We consider
just these cases here, starting with the Zn-indexed case.
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For K a field, let An := K[t1, . . . , tn] denote the polynomial ring in n variables with
K coefficients. In general, if M is an R-module and S ⊂ R is a subring, then M has the
structure of an S-module by restricting the action of R on M to S. Since K is a subring of
An, any An-module M has the structure of a K-vector space by restricting the action of An

on M to K.

Definition 6.2. Let ei denote the ith standard basis vector in Zn. We say a Zn-grading on a
An-module M is a vector space decomposition

M = ⊕z∈ZnMz

such that tiMz ⊂ Mz+ei for all z ∈ Zn and i ∈ {1, . . . , n}. An An-module M is said to be
Zn-graded if it comes equipped with a Zn-grading.

A morphism f : M → N of Zn-graded modules is a module homomorphism (in the usual
sense) such that f(Mz) ⊂ Nz for all z ∈ Zn. With these morphisms, the Zn-graded modules
form a category n-mod.

For M a Zn-graded module and m ∈M , we say m is homogeneous if m ∈Mz for some
z ∈ Zn. By the definition of the direct sum, any m ∈ M can be written as m =

∑l
j=1mj

for some homogeneous elements m1,m2, . . . ,ml. A homogeneous submodule of M is one
generated by a set of homogeneous elements.

Proposition 6.3 (Carlsson, Zomorodian 2006). The category Fun(Zn,Vec) of persistence
modules is equivalent (in fact isomorphic) to the category n-mod of Zn-graded An-modules.

Proof. Define a functor F : Fun(Zn,Vec)→ n-mod on objects by F (M) = ⊕z∈ZnMz, with
the action of the polynomial ring specified as follows:

• For m ∈M homogenous, ti(m) := Mz,z+ei(m) for all z ∈ Nn and i ∈ {1, . . . , n},
• The action of ti on all of F (M) is then given by linearity. More precisely, if m =

∑l
j=imj

with each mj homogeneous, then

ti(m) :=
l∑

j=1

ti(mj).

• Given this, the action of K[t1, . . . , tn] on F (M) is defined via the module axioms in a
similar way. For example,

(t21 + 2t2)(m) = t1(t1(m)) + 2t2(m).

This indeed gives a well defined Zn-graded module. Natural transformations γ : M → N
induce morphisms F (γ) : F (M)→ F (N) in the obvious way.

It remains to check that F is really a functor, and that it in fact is an isomorphism. This
is straightforward.
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Exercise 6.4. Fill in the details of the above proof.

Remark 6.5. An-modules are the basic objects of study in commutative algebra. They have
been studied extensively, and their theory is highly developed. Proposition 6.3 allows us
to adapt standard language and constructions for An-modules to the study of persistence
modules, provided those constructions make sense in the n-graded setting. Fortunately, as a
rule of thumb, definitions and arguments in module theory tend to carry over to the n-graded
setting (and sometimes become simpler there).

Remark 6.6. In essentially the same way, we can interpret Nn-persistence modules as
N-graded modules over An. And similarly, we can identify Rn-persistence modules with
Rn-graded modules over the monoid ring K[0,∞)n [125], a variant of An where the exponents
of monomials are allowed to take any non-negative real value.

6.2 Free Persistence Modules

For P a poset, K a field, and a ∈ P , let Qa denote the P -persistence module given by

Qa
x =

{
K if a ≤ x,

0 otherwise,
Qa
x,y =

{
IdK if a ≤ x,

0 otherwise.

In what follows, if a ∈ Nn and we consider Qa : P → Vec, where P is unspecified, it will be
understood that P = Nn.

Example 6.7. Q(1,1) is the following, where all maps between copies of K are the identity:

...
...

...
...

0 K K K · · ·

0 K K K · · ·

0 K K K · · ·

0 0 0 0 · · ·

Exercise 6.8. For which a, b ∈ Nn is there a non-zero morphism (i.e., natural transformation)
Qa → Qb?

Definition 6.9. We say a P -persistence module F is free if there exists a multiset A of
elements in P such that F ∼= ⊕a∈AQa.

Example 6.10. The free module Q(2,1) ⊕Q(1,2) is given by the following diagram, where all
maps between two copies of the same vector space are the identity:
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...
...

...
...

0 k k2 k2 · · ·

0 k k2 k2 · · ·

0 0 k k · · ·

0 0 0 0 · · ·

(
1

0

)
(

0

1

)

6.3 Basic Definitions and Constructions

As a rule, for P any poset, most of the usual constructions from elementary abstract algebra
make sense in the category VecP . For example, we have well defined notions of submodules,
quotients, kernels, images, and direct sums in VecP . 8 We have already discussed direct sums
in Section 4.3.1. Here, we describe some other basic algebraic constructions for persistence
modules that we will need later.

Let M be a d-parameter persistence module.

Definition 6.11. A submodule N of a P -persistence module M is a subfunctor of M ; see
Definition 3.30. More concretely, it is a collection of vector spaces {Nz ⊂Mz}z∈P , such that
My,z(Ny) ⊂ Nz for all y ≤ z ∈ P . The restrictions of the internal maps My,z give N the
structure of a P -persistence module.

Exercise 6.12. Check that under the isomorphism of Proposition 6.3, submodules of Zn-
persistence modules correspond to homogeneous submodules of Zn-graded modules.

Exercise 6.13. For which a, b ∈ Nd do we have Qa ⊂ Qb?

We will refer to natural transformations of persistence modules simply as morphisms.

Definition 6.14. Given a morphism of persistence modules f : M → N , the submodules
ker f ⊂M and im f ⊂ N are well defined, and are defined indexwise, i.e., (ker f)z = ker(fz)
and (im f)z = im(fz).

Exercise 6.15. Check that ker f and im f are in fact well-defined submodules.

We next define quotients of persistence modules.

Definition 6.16. Let M be a persistence module and N ⊂M be a submodule. The quotient
M/N is given by (M/N)z = Mz/Nz, with the internal maps of M/N the induced maps
on quotients as defined in Exercise 2.39 (i). (Since My,z(Ny) ⊂ Nz, the induced maps on
quotients are indeed well defined.)

8One standard way of expressing this is to note that VecP has the structure of an abelian category. But
we will not define abelian categories here, nor check that VecP is an abelian category.
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Example 6.17.

• Q0/Q1 is isomorphic to the following:

K 0 0 0 · · ·

• In fact, an N-indexed interval module (see Definition 10.8) is isomorphic either to Qa

for some a ∈ N, or to Qa/Qb for some a < b ∈ N.
• Q0,0/Q1,1 is isomorphic to the following:

...
...

...

K 0 0 · · ·

K 0 0 · · ·

K K K · · ·

• Q0,0/Q1,0 is isomorphic to the following:

...
...

...

K 0 0 · · ·

K 0 0 · · ·

K 0 0 · · ·

Exercise 6.18. Given submodules W and W ′ of a persistence module M , let W +W ′ ⊂M
be given by

(W +W ′)z = {w + w′ | w ∈ Wz, w ∈W ′
z}.

This is clearly also a submodule of M .

1. Draw the diagram of vector spaces Q0,1 +Q1,0 ⊂ Q0,0.
2. Up to isomorphism, what is the module Q0,0/(Q0,1 +Q1,0)?

If v ∈Mz we write gr(v) = z.

Definition 6.19. We say that S ⊂
⋃
z∈P Mz is a set of generators for a P -persistence module

M if for any v ∈
⋃
z∈P Mz,

v =
k∑
i=1

ciMgr(vi),gr(v)(vi)
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for some v1, v2, . . . , vk ∈ S and scalars c1, . . . , ck ∈ K. We say M is finitely generated if there
exists a finite set of generators for M .

Exercise 6.20. Give an example of an N-indexed persistence module whose vector spaces
have dimension at most one, and for which any minimal generating set has two elements.

Exercise 6.21. Give an example of an N-indexed persistence module which is not finitely
generated, but whose vector spaces are all of finite dimension.

6.4 Bases of Free Persistence Modules

Many of the standard ideas of linear algebra adapt in a straightforward way to free persistence
modules. For example:

Definition 6.22. A basis of a free persistence module is a minimal set of generators.

Remark 6.23. For a ∈ P , let 1a denote the multiplicative identity of Qa
a = K. For any

multiset A of elements in P , the multiset {1a ∈ Qa
a | a ∈ A} is a basis of the free module

F := ⊕a∈AQa. We call this the standard basis of F .

Though as in linear algebra, bases are usually not unique, the following is true:

Proposition 6.24. The cardinality of elements at each grade in a basis for a free persistence
module is independent of the choice of basis.

To prepare for the proof of Proposition 6.24, we introduce the following notation: For
M : P → Vec, define the submodule M◦ ⊂M by

M◦
z = ⟨m ∈Mz | m = My,z(m

′) for some y < z ∈ P ⟩.

Thus M◦ is generated by vectors of M which are “shifts” of vectors at lower indices. Note that
all of the internal maps in the quotient M/M◦ are trivial. For z ∈ P , let q : Mz →Mz/M

◦
z

denote the quotient map.
For M a P -persistence module and S ⊂

⋃
z∈P Mz, let Sz = S ∩Mz.

Lemma 6.25. Let B be minimal set of generators of a persistence module M : P → Vec.
For each z ∈ P , q(Bz) is a basis for Mz/M

◦
z .

Proof. Mz is generated by S := ∪y≤zMy,z(By), so q(S) generates Mz/M
◦
z . But q(b) = 0 for

b ∈ ∪y<zMy,z(By). Therefore q(Bz) generates M◦
z .

It remains to check that q(Bz) is linearly independent. If not, there is a non-trivial linear
combination of elements of q(Bz) which is equal to zero. This lifts to a non-trivial linear
combination of elements of Bz which is equal to an element of v ∈ M◦

z , say v =
∑k

i=1 cibi,
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where bi ∈ Bz, ci ∈ K for all i, and c1 ≠ 0. Since v ∈M◦
z and B generates M , we can write

v =
∑l

i=1 c
′
ib

′
i, where b′i ∈ ∪y<zMy,z(By) and c′i ∈ K. Thus,

b1 =
l∑

i=1

c′i/c1b
′
i −

l∑
i=2

c′i/c1b
′
i,

contradicting the minimality of B. We conclude that q(Bz) is linearly independent, and
hence a basis for Mz/M

◦
z .

Proof of Proposition 6.24. Let B be a basis for a free module M . According to a standard
linear algebra result, the cardinality of a basis of any vector space V is independent of
the choice of basis. Thus, taking V = Mz/M

◦
z , Lemma 6.25 implies that |q(Bz)| = |Bz| is

independent of the choice of B.

Remark 6.26. To put our definition of a free persistence module (Definition 6.9) in context,
we note that there is a standard categorical notion of a free object in a concrete category,
and our definition of a free persistence module is equivalent to a graded variant of this; see,
e.g., [160, Section 4] or [53, Section 4.2].

Perhaps add this alternative definition of a free module.

Our proof of Proposition 6.28 below will use the following basic fact about quotient vector
spaces:

Exercise 6.27. V = U⊕W is a vector space, p : V → U is the projection, and q : V → V/W
is the quotient, then there is a canonical isomorphism f : V/W → U such that p = f ◦ q.

Proposition 6.28. If B is a basis for a free P -persistence module F , then for each z ∈ P ,

B′ := {Fgr(b),z(b) | b ∈ B, gr(b) ≤ z}

is a basis for Fz.

Proof. Since B is a generating set for F , ⟨B′⟩ = Fz. It remains to check that that B′ is
linearly independent. It suffices to show the result in the case that F =

⊕
a∈AQ

a for some
multiset A in P .

To arrive at a contradiction, suppose we have a linear combination
∑k

i=1 cib
′
i = 0 with

k ≥ 1, each b′i ∈ B′, and each ci ̸= 0. Write b′i = Fgr(bi),z(bi) for bi ∈ B and let y denote a
maximal element of {gr(b1), · · · , gr(bk)}. Let B′′ = {bi | gr(bi) = y}, and let

γ : F →
⊕
a∈A
a=y

Qa

denote the projection. By Lemma 6.25, B′′ descends to a basis for Fy/F
◦
y . Writing

V =
⊕
a∈A
a=y

Qa
y
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and noting that

F ◦
y =

⊕
a∈A
a<y

Qa

we thus have Fy = V ⊕ F ◦
y . Exercise 6.27 then implies that γ(B′′) is a basis for V , hence

linearly independent. Moreover, our assumption that y is maximal implies that γ(bi) = 0
for each bi ̸∈ B′′. Thus, γ(

∑k
i=1 cib

′
i) =

∑
bi∈B′′ ciγ(b′i) = 0. By the linear independence of

γ(B′′), and the injectivity of Fy,z, we have that ci = 0 for each bi ∈ B′′. This contradicts our
assumption that each ci ̸= 0. We conclude that no non-trivial linear combination of B′ exists,
i.e., B′ is linearly independent.

This proof works, but I dislike it. I am bothered by the use of the projection. Is there a cleaner way to prove this?

Corollary 6.29. B is a basis for a free module F if and only if there exists a free module
F ′ = ⊕z∈AQa and natural isomorphism γ : F ′ → F such that B is the image of the standard
basis of F ′ under γ.

Proof. It suffices to check that

(i) F is the internal direct sum of the submodules ⟨b⟩b∈B,
(ii) for each b ∈ B, ⟨b⟩ ∼= Qgr(b).

Item (i) follows from Proposition 6.28, and (ii) holds because each internal map in a free
module is an injection.

As I’ve worked on the notes, I’ve come to see that it would be cleaner and more transparent to take Corollary 6.29 as the
definition of a basis from the outset. At some point in the future, I’ll make this change in the notes.

6.5 Matrix Representation of Morphisms Between Free Modules

Let’s first recall some basic linear algebra: Let B be a finite ordered basis of a vector space
V . Denote the ith element of B as bi. We can represent a vector v ∈ V with respect to B as
a vector [v]B ∈ K |B|; we take [v]B to be the unique vector such that

v =
∑
i

[v]Bi bi.

Along similar lines, for B′ an ordered basis for a vector space W , we represent a linear
map γ : V → W via a matrix [γ]B

′,B with coefficients in the field K, by taking the jth column
of [γ]B

′,B to be [γ(bj)]
B′

.
Now let’s adapt this story to free modules: Let B be a finite ordered basis of a free

P -persistence module F . For z ∈ P , we can represent a vector v ∈ Fz with respect to B as a
vector [v]B ∈ K |B|; we take [v]B to be the unique vector such that [v]Bi = 0 if gr(bi) ̸≤ z and

v =
∑

i:gr(bi)≤z

[v]Bi Fgr(bi),z(bi).

Thus, [v]B records the field coefficients in the linear combination of B giving v.
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Example 6.30. Let F = Q(1,0) ⊕Q(0,1). Then F0,2 = K. Let B be the standard basis for F .
Then for v = 1 ⊂ F0,2, we have [v]B = (0 1)T .

Along similar lines, for B′ a finite ordered basis of a free persistence module F ′, we
represent a morphism γ : F → F ′ via a matrix [γ]B

′,B with coefficients in the field K, with
each row and column labeled by an element of P , as follows:

• The jth column of [γ]B
′,B is [γ(bj)]

B′
.

• The label of the jth column is gr(bj),
• The label of the ith row is gr(B′

i).

Where no confusion is likely, we sometimes write [γ]B
′,B simply as [γ].

Example 6.31. Let F = Q(1,0) ⊕Q(0,1), G = Q(0,0) and consider the morphism γ : F → G
whose restriction to each summand is the inclusion. Then with respect to the standard bases,

[γ] =
(1, 0) (0, 1)

( )(0, 0) 1 1 .

To explain where the entries of γ come from, note that by definition, [γ]1,1 is the element of
K which solves

γ(1(1,0)) = [γ]1,1G(0,0),(1,0)(1
(0,0)).

It’s easy to see that

γ(1(1,0)) = G(0,0),(1,0)(1
(0,0)) = 1 ∈ K = G(0,1).

Thus, we must have [γ]1,1 = 1. Essentially the same argument shows that [γ]1,2 = 1 as well.

6.6 Column and Row Operations as Change of Basis

We start by recalling a basic fact from linear algebra:

Proposition 6.32. If B = {b1, . . . , bk} is a basis for a vector space V , then for any i ≠ j
and c ∈ K, the set obtained from B by replacing bi with bi + cbj is also a basis for V .

We introduce the following notation: For a matrix M , Mi,∗ will denote the ith row of M ,
and M∗,i will denote the ith column of M .

One sees the following proposition in undergraduate linear algebra:

Proposition 6.33. Let γ : V → W be a linear map of finite-dimensional vector spaces, and
let

A = {a1, . . . , an} and B = {b1, . . . , bm}

be bases for V and W , respectively. For any c ∈ K,
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• If A′ is obtained from A by replacing ai with ai + caj, then [γ]B,A
′
is obtained from

[γ]B,A by adding c[γ]B,A∗,j to [γ]B,A∗,i .

• Similarly, if B′ is obtained from B by replacing bi with bi + cbj, then [γ]B
′,A is obtained

from [γ]B,A by subtracting c[γ]B,Ai,∗ from [γ]B,Aj,∗ .

Exercise 6.34. Prove Proposition 6.33.

Example 6.35. Consider the identity map Id : R3 → R3. Let B denote the standard
basis for R3, i.e., B = {e1, e2, e3}. Then clearly [Id]B,B is the 3x3 identity matrix. Let
B′ = {e1, e1 + e2, e3} Then

[Id]B,B
′

=

1 1 0
0 1 0
0 0 1

 ,

[Id]B
′,B =

1 −1 0
0 1 0
0 0 1

 ,

These linear algebra results extend readily to finitely generated free modules:

Proposition 6.36. If B = {b1, . . . , bk} is a basis for a free module F , then for any i ≠ j with
gr(bi) ≥ gr(bj) and c ∈ K, the set B′ obtained from B by replacing bi with bi+ cFgr(bj),gr(bi)(bj)
is also a basis for F .

Example 6.37. The standard basis for F := Q0 ⊕ Q1 is {10, 11}. According to Proposi-
tion 6.36, {10, 11 + F0,1(1

0)} is also a basis for F .

Proof of Proposition 6.36. It’s easy to check that bi ∈ ⟨B′⟩, so B′ generates F . We need to
check that B′ is a minimal generating set for F . By Lemma 6.25, B descends to a basis for
the vector space F/F ◦. Given this, Proposition 6.32 implies that B′ also descends to a basis
for F/F ◦. But if B′ is a non-minimal set of generators, then B′ descends to a non-minimal
set of generators for F/F ◦, a contradiction. Hence B′ is a basis for F .

Proposition 6.38. Let γ : F → G be a morphism of finitely generated free modules, and let

A = {a1, . . . , an} and B = {b1, . . . , bm}

be bases for F and G, respectively. For any c ∈ K,

• If gr(aj) ≤ gr(ai) and A′ is obtained from A by replacing ai with

ai + cFgr(aj),gr(ai)(aj),

then [γ]B,A
′
is obtained from [γ]B,A by adding c[γ]B,A∗,j to [γ]B,A∗,i .
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• If gr(bj) ≤ gr(bi) and B′ is obtained from B by replacing bi with

bi + cGgr(bj),gr(bi)(bj),

then [γ]B
′,A is obtained from [γ]B,A by subtracting c[γ]B,Ai,∗ from [γ]B,Aj,∗ .

The upshot of Proposition 6.38 is that for a matrix representing a morphism of free
modules,

• Adding a column of lower grade to one of equal or higher grade can be interpreted as a
change of basis.

• Adding a row of higher grade to one of equal or lower grade can be interpreted as a
change of basis.

• Other column and row additions cannot be interpreted as a change of basis.

We will use these ideas to prove the structure theorem for 1-D persistence modules, and
to explain why the standard algorithm for computing 1-parameter persistent homology is
correct.

6.7 Presentations of persistence modules

Definition 6.39. A presentation of a P -persistence module M is a morphism γ : F → F ′ of
free modules such that M ∼= F ′/ im(γ).

If F and F ′ are both finitely generated, then we can represent γ with respect to a choice
of bases for F and F ′ as a matrix [γ] with each of its rows and columns labeled by an element
of P . We will call [γ] a presentation matrix for M , or by slight abuse of terminology, a
presentation of M . Note that [γ] may have 0 columns or 0 rows.

Proposition 6.40. For any poset P and P -persistence module M , there exists a presentation
of M .

To prove Proposition 6.40, we will need the following results of the following two exercises:

Exercise 6.41. Given a basis B for a free P -persistence module F , a P -persistence module
M , and a grade-preserving map B → ⊔z∈PMz, show that there exists a unique morphism
F →M extending γ.

Exercise 6.42 (First Isomorphism Theorem). Show that for any morphism of persistence
modules γ : M → N , M/ ker(γ) ∼= im(γ).

Proof of Proposition 6.40. Choose set S of generators for M . Consider the free module

F S =
⊕
v∈S

Qgr(v).

68



By Exercise 6.41, we obtain a map α : F S →M sending 1gr(v) ∈ Qgr(v)
gr(v) to v for each v ∈ S,

which is easily checked to be an epimorphism, i.e., αz is surjective for each z ∈ P . We
next choose a set S ′ of generators for kerα, and proceeding in exactly the same way, we
obtain a free module F S′

and an epimorphism β : F S′ → ker(α). Let γ denote the map
obtained by post-composing β with the inclusion kerα ↪→ F S. Then im γ = kerα, so
F S/ im γ = F S/ kerα ∼= M by the first isomorphism theorem, so γ is a presentation for
M .

Proposition 6.43. Suppose that M is a finitely generated P -persistence module where either
P is finite, P = Zn, or P = Nn. Then there exists a presentation γ : F → F ′ of M with F
and F ′ finitely generated.

Proposition 6.43 is important because it makes clear that if M is finitely generated, then
there exists a presentation matrix for M . The proof uses the following result:

Proposition 6.44. Any submodule of a finitely generated Zn-persistence module is finitely
generated.

Sketch of proof. As earlier, let An := K[t1, . . . , tn]. Given the correspondence between Zn-
parameter persistence modules and Zn-graded An-modules (Proposition 6.3), it suffices to
prove that any submodule of a finitely generated An-module is finitely generated.9 This is a
standard fact in commutative algebra, following from the fact that An is a Noetherian ring,
i.e., every ideal of An is finitely generated. See the discussion of Hilbert’s basis theorem in
[94, Chapter 1] for short, self-contained proofs of these results.

Proof of Proposition 6.43. We use the notation from the proof of Proposition 6.40, which
constructs a presentation γ : F S′ → F S of M . Since M is assumed to finitely generated, we
may take S to be finite, which implies that F S is finitely generated. If we can show that
kerα is also finitely generated, then we make also take S ′ to be finite, which implies that F S′

finitely generated, completing the proof. If P is finite, then since each vector space of F S is
finite dimensional, the same is true for kerα, so kerα is indeed finitely generated. If P = Zn
or P = Nn, then Proposition 6.44 implies that kerα is finitely generated.

Remark 6.45. Presentations are usually not unique. We will discuss the important idea of a
minimal presentation later in this course. But even this is not unique, though its dimensions
are unique and its labels are unique, up to permutation.

Example 6.46. For any d, the 0 × 0 matrix is a presentation matrix of 0, the trivial
d-parameter persistence module. This represents the presentation 0→ 0.

9There is one subtlety here: This sufficiency statement assumes that if a homogeneous submodule N
of a d-graded Ad-module M is generated by a finite set S, then it is in fact generated by a finite set of
homogeneous elements. But this is true: Indeed, N is generated by a set of homogeneous elements T , so every
element of s ∈ S is generated by a finite subset of T s ⊂ T . Thus, N is generated by the finite set ∪s∈ST

s.
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For any a ∈ Nd,
a

( )a 1 .

is also a presentation matrix of 0. This corresponds to the presentation Qa Id−→ Qa, whose
cokernel is 0.

Example 6.47 (Presentations of Interval Modules). For this next example, we restrict
attention to N-indexed modules. For a < b ∈ N ∪ {∞}, let

[a, b) := {z ∈ N | a ≤ z < b}.

Then letting K [a,b) the interval module defined in Definition 10.8, we have that K [a,b) ∼= Qa/Qb

if b <∞, and K [a,b) = Qa if b =∞. Thus, if b <∞, the inclusion Qb ↪→ Qa is a presentation
for K [a,b). With respect to the standard bases, this is represented by the labeled matrix:

b
( )a 1 .

The 1 × 0 matrix with row-label a is a presentation for K [a,∞) = Qa. Conversely, each
1× 1 or 1× 0 presentation matrix specifies an interval module, or a trivial module (up to
isomorphism).

Remark 6.48 (Presentations of direct sums). If labeled matrices P and Q are presentations
for persistence modules M and N , then the block diagonal matrix(

P 0
0 Q

)
,

with the row and column labels induced by P and Q in the obvious way, is a presentation for
M and N . Conversely, any block-diagonal presentation matrix for a module M specifies a
decomposition of M into summands.

Example 6.49. A presentation of K [0,3) ⊕K [1,2) is given by

3 2( )
0 1 0
1 0 1

Permuting rows or columns always yields a new presentation matrix; this corresponds to
permuting the bases of the free modules. Thus, for example, another presentation for
K [0,3) ⊕K [1,2) is given by

2 3( )
0 0 1
1 1 0
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7 Proof of the Structure Theorem for Finitely Gener-

ated N-Indexed Persistence Modules

We now prove Theorem 4.7, the structure theorem for persistence modules, in the special case
of finitely generated N-indexed modules. (The proof for finitely generated Z-indexed modules
is exactly the same, in fact.). For convenience we give the statement that we will prove here

Theorem. If M is a finitely generated N-indexed persistence module, then there exists a
unique multiset of intervals BM in N such that

M ∼= ⊕I∈BM
KI .

We give an algorithmic proof that will lead naturally into a discussion of the standard
algorithm for computing persistent homology. One way to prove the standard structure theo-
rem for finitely generated modules over a principal ideal domain is by putting a presentation
matrix into Smith normal form, and our proof is a variant of this argument, specialized to
the case of persistence modules.

7.1 Existence of Decomposition into Interval Modules

Definition 7.1. We’ll say a matrix is in normal form if it has at most one non-zero entry in
each row and each column.

Lemma 7.2. A finitely generated 1-parameter persistence module M decomposes as a sum
of interval modules if and only if there is a presentation matrix A for M in normal form.

Proof. This follows from Example 6.47 and Remark 6.48.

Proof of Existence Part of the Structure Theorem. By Lemma 7.2 it suffices to show that
there is a presentation matrix for M in normal form. Let A be any presentation matrix
for M , with the row labels and column labels both in increasing order. Such P exists by
Proposition 6.43. We will show how to compute a presentation in normal form by applying
column and row additions to A. It follows from Proposition 6.38 that adding a scalar multiple
of column i to column j ̸= i corresponds to a change of basis operation if i < j, and that
adding a scalar multiple of row i to row j ≠ i corresponds to a change of basis operation if
i > j. Thus, performing “rightward” column additions and “upward” row additions on the
presentation matrix yields another presentation matrix for M , but other row and column
additions may result in a labeled matrix which is no longer a presentation matrix for M .
Thus, it is enough to show that an arbitrary matrix can be transformed into a normal one
by rightward column additions and upward row additions. We show this in what follows
(Proposition 7.6).

Remark 7.3. This is not the only way to prove the existence portion of the structure theorem.
In particular, it is not necessary to frame the argument in terms of matrices. One nice
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alternative argument, due to Greg Henselmen-Petrusek, hinges on the very nice observation
that given two filtrations F , G of a single finite-dimensional vector space V there is choice of
basis B for V such that any subspace of either F or G is the span of a subset of B.

I have chosen to present the argument here because of its close connection with computa-
tional material which I in any case want to cover.

7.2 The “Standard Reduction”

We introduce a variant of Gaussian elimination that is also the basis for the standard algorithm
for computing persistent homology. We call this the standard reduction. As we present it,
it involves only column additions. (Symmetrically, one could take it to only involve row
additions.)

Let R be an m× n matrix with coefficients in K. For j ∈ {1, . . . , n}, define the pivot of
R∗,j by

ρj :=

{
null if R∗,j = 0,

max {i | R(i, j) ̸= 0} otherwise.

We say R is reduced if ρj ̸= ρk whenever j ≠ k are the indices of non-zero columns in R.
Note that if R is reduced, then all columns are linearly independent, so RankR is simply the
number of non-zero columns of R.

The standard reduction takes any matrix D and performs left-to-right column additions to
transform D into a reduced matrix R. As we will explain, this algorithm underlies standard
computations of persistent homology. It was introduced by Carlsson and Zomorodian in their
2005 paper “Computing Persistent Homology.”

Algorithm 3 The Standard Reduction (Outline)

Input: An m× n matrix D
Output: A reduced m× n matrix R obtained from D by left-to-right column additions
1: R← D
2: for j = 1 to n do
3: while ∃ k < j such that null ̸= ρj = ρk do

4: add −R(ρj ,j)

R(ρj ,k)
R∗,k to R∗,j

We will not worry yet about the details of how this while loop is implemented, or about
other low-level details about the algorithm such as how the matrices are stored. The important
point for now is that one can always transform a matrix into a reduced one by left-to-right
column additions.

Example 7.4. Here and in many examples that follow, I will work with the field K = Z/2Z.
This is the most common choice of field in TDA, and working with this makes the matrix
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arithmetic simpler. Consider the matrix1 0 1
0 1 1
1 1 1

 .

The standard reduction performs the following sequence of column operations:1 0 1
0 1 1
1 1 1

 Add col. 1 to col. 2−−−−−−−−−−−→

1 1 1
0 1 1
1 0 1


Add col. 1 to col. 3−−−−−−−−−−−→

1 1 0
0 1 1
1 0 0

 Add col. 2 to col. 3−−−−−−−−−−−→

1 1 1
0 1 0
1 0 0

 .

7.3 Putting a Reduced Matrix into Normal Form via Row Opera-
tions

Next we explain how to transform a reduced matrix R into normal form by upwards row
additions. This is simple:

Algorithm 4 Normalize: Put Reduced Matrix in Normal Form

Input: An m× n reduced matrix R
Output: A matrix N in normal form, obtained from R by upward row additions.
1: N ← R
2: for i = m to 1 (in decreasing order) do
3: if ∃ a column j of N whose pivot is i then
4: for k = i− 1 to 1 (in decreasing order) do

5: add −Nk,j

Ni,j
Ni,∗ to Nk,∗

Example 7.5. We put the reduced matrix that we computed in Example 7.4 into normal
form: 1 1 1

0 1 0
1 0 0

 Add row 3 to row 1−−−−−−−−−−−→

0 1 1
0 1 0
1 0 0

 Add row 3 to row 1−−−−−−−−−−−→

0 0 1
0 1 0
1 0 0


Proposition 7.6. Applying Algorithm 3 followed by Algorithm 4 puts an arbitrary matrix in
normal form, using only rightward column additions and upward row additions.

Remark 7.7. There is a symmetry here: We could have instead performed the standard
reduction on the rows, and then applied Algorithm 4 to the columns. We will return to this
point later.
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7.4 Uniqueness of the Barcode

The uniqueness of the barcode can be seen as a corollary of a more general result about
uniqueness of direct sum decompositions, which (I believe) is due to Azumaya. But we will
give an elementary proof.

Proof of uniqueness part of the structure theorem. Let M be finitely generated N-indexed
persistence module. We have shown that there exists a finite multiset of intervals BM in N
such that M ∼= ⊕J∈BM

K [a,b). We need to show that such BM is unique. To do so, for each
interval J ⊂ N, we give a formula for the number of copies of J in BM , such that this formula
depends only on the isomorphism type of M (and hence not on the choice of decomposition):

• For any a < b ∈ N, the number of copies of [a, b) in BM is

RankMa,b−1 − RankMa,b − RankMa−1,b−1 + RankMa−1,b.

• For any a ∈ N, the number of copies of [a,∞) in BM is

lim
b→∞

RankMa,b − lim
b→∞

RankMa−1,b.

We now explain why these formulae are true: For any interval J ⊂ N, let C(J) denote the
number of intervals in BM containing J . To establish the first formula, note that for any
a < b ∈ N, C([a, b)) = RankMa,b−1. Now clearly, the number of copies of [a, b) in BM is

C([a, b))− C([a, b+ 1))− C([a− 1, b)) + C([a− 1, b+ 1)).

The first formula follows. To establish the second formula, note that for any a ∈ N, the
number of intervals in BM containing [a,∞) is

lim
b→∞

RankMa,b.

The number of copies of [a,∞) in BM is

C([a,∞))− C([a− 1,∞)).

The second formula follows.

Corollary 7.8. Given a matrix M , let N and N ′ be matrices in normal form, both obtained
from M by sequences of rightward column additions and upward row additions. The positions
of nonzero entries in N and N ′ are the same
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8 Computing Persistent Homology

8.1 Reading a Barcode off of a Reduced Presentation

Given a presentation matrix A, we will denote the labels of the ith row and jth column of A
by rli and clj, respectively.

It follows from Example 6.47 and Remark 6.48 that a presentation matrix A for M in
normal form encodes BM as follows:

BM = {[rli, clj) | Ai,j ̸= 0 and rli < clj} ∪ {[rli,∞) | Ai,∗ = 0}. (2)

Example 8.1. Let M be a module having presentation matrix:

2 3 4( )0 1 0 1
1 0 1 1
2 1 1 1

Note that as an unlabeled matrix, this is the same as the one of Example 7.4. Thus, in view
of that example and Example 7.5, the following is a presentation matrix for M in normal
form:

2 3 4( )0 0 0 1
1 0 1 0
2 1 0 0

Thus, in view of (2), the barcode of M is given by BM = {[1, 3), [0, 4)}.

In fact, one can read the barcode directly off of a reduced presentation matrix for M
whose row labels are in increasing order, without computing the normal form, because of the
following:

Proposition 8.2.

(i) Upwards row additions do not change the pivots of a matrix (i.e., the pivot of every
column is preserved).

(ii) In particular, when we apply Algorithm 4 to a reduced matrix R, the pivots entries of R
become the non-zero entries of the resulting normal form.

Thus, given a presentation matrix for M whose row and column labels are in sorted order,
to obtain BM it’s enough to run the standard reduction to obtain a reduced presentation
matrix A, and use the following formula:

BM = {[rlρj , clj) | A∗,j ̸= 0 and rlρj < clj}
∪ {[rli,∞) | i is not the pivot of any column}.

(3)
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However, in practical applications of TDA, one does not have a presentation of M to
start; instead one has chain complex C• such that M is (isomorphic) to a homology module
of C•. One usually does not precompute a presentation of the homology module, but rather
computes the barcode of M directly from C•. As it’s usually carried out, the computation
still amounts to an application of the standard reduction. In what follows we will explain all
of this in detail.

Exercise 8.3. Supposing M : N→ Vec has the following presentation matrix (over Z/2Z),
compute BM .

4 3 6 5


1 1 0 1 1
0 1 1 0 1
3 0 1 1 0
2 1 1 1 0

8.2 Review of notation for Simplicial Chain Complexes
This section
is a little
redundant
with mate-
rial from
Section 2.
But since it
was already
here from
the 2019
version of
the notes,
and since
it might be
good review,
I’ll leave it
here for now.
I may cut it
eventually,
and merge
the example
into section
2, or into
the example
below of a
filtration.

Recall from Example 2.34 that for S a finite simplicial complex, let

C(S) = · · · ∂j+1−−→ Cj(S)
∂j−→ Cj(S)

∂j−1−−→ · · · ∂2−→ C1(S)
∂1−→ C0(S),

denote the usual simplicial chain complexes with coefficients in the field K. Thus Cj(S) is
the vector space with basis the j-simplices.

With respect to any choice of bases for the vector spaces Cj(S), we can represent C(S)
as a sequence of matrices [∂j], [∂j−1], . . . , [∂1].

Example 8.4. Let S be the 2-simplex [1 2 3] regarded as a simplicial complex. Let us work
over the field Z/2Z. Then

C(S) = · · · → 0→ 0→ C2(S)
∂2−→ C1(S)

∂1−→ C0(S),

where

• C0(S) ∼= (Z/2Z)3 is the vector space with basis {[1], [2], [3]},
• C1(S) ∼= (Z/2Z)3 is the vector space with basis {[1 2], [2 3], [1 3]},
• C2(S) ∼= (Z/2Z) is the vector space with basis {[1 2 3]}.

With respect to these ordered bases,

[∂2] =

1
1
1

 , [∂1] =

1 0 1
1 1 0
0 1 1

 .
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8.3 Chain Complexes of Filtrations

Recall that in the usual persistent homology / TDA pipeline, we map a data object X to a
filtration F . Let us assume for now that F is N-indexed. Here, we assume as in Section 5.5
that F is a finite simplicial filtration, i.e., there is a finite simplicial complex S such that
Fz = S for all z sufficiently large. Recall that in computations, we can store F in memory by
storing S (there are different ways to do this, but the simplest way is to store each simplex as
a list of vertices), together with the birth index b(σ) of each simplex σ ∈ S, i.e., the N-index
where σ first appears in F .

As explained earlier, post-composing F with the homology functor Hi yields a persistence
module Hi(F ). To compute the barcodes Bi(F ) := Hi(F ) from F , one first constructs the
chain complex of persistence modules

C(F ) = · · · ∂j+1−−→ Cj(F )
∂j−→ Cj−1(F )

∂j−1−−→ · · · ∂2−→ C1(F )
∂1−→ C0(F ),

where

• Cj(F )z is the usual simplicial chain vector space Cj(Fz),
• each internal map Cj(F )y → Cj(F )z of Cj(F ) is the inclusion,
• for each z, (∂j)z is the usual simplicial boundary map ∂j : Cj(F )z → Cj−1(F )z.

Exercise 8.5. Check that
ker(∂j)/ im(∂j+1) = Hi(F )

(where Hi(F ) is defined by post-composition with the homology functor.)

It’s not hard to show that each Cj(F ) is a free 1-parameter persistence module with basis
corresponding to the j-simplices of Fmax, i.e.,

Cj(F ) ∼=
⊕

σ a j-simplex of S

Qb(σ)

via a distinguished isomorphism. Let us fix an order on each set of j-simplices. Then with
respect to the resulting ordered bases, the matrix representation of

∂j : Cj(F )→ Cj−1(F )

is exactly the matrix representation of the linear transformation

∂j : Cj(S)→ Cj−1(S),

except that the former has labels for the rows and columns.
It is sometimes convenient to regard the collection of maps {∂j}j∈N as a single morphism

of free modules

∂ :
dimS⊕
j=0

Cj(F )→
dimS⊕
j=0

Cj(F ).
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With respect to the basis for
dimS⊕
j=0

Cj(F ) consisting of all simplices, with simplices in order

of increasing dimension, [∂] is a block matrix whose only only non-zero blocks lie on the
superdiagonal, and the non-zero blocks are the matrices [∂j].

Example 8.6. To specify a filtration F , we assume that the 2-simplex S of Example 8.4 is
filtered so that the birth index of each simplex in S is given by the following table:

simplex [1] [2] [3] [1 2] [2 3] [1 3] [1 2 3]

birth index 1 2 3 4 5 6 7

With respect to the simplex orderings of the earlier example, the non-zero boundary
morphisms

∂j : Cj(F )→ Cj−1(F )

are represented by the following labeled matrices:

[∂2] =

7( )4 1
5 1
6 1

[∂1] =

4 5 6( )1 1 0 1
2 1 1 0
3 0 1 1

The labeled matrix [∂] is thus given by

[∂] =

1 2 3 4 5 6 7



1 0 0 0 1 0 1 0
2 0 0 0 1 1 0 0
3 0 0 0 0 1 1 0
4 0 0 0 0 0 0 1
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0

8.4 Computing a Barcode Directly from a Chain Complex

We now explain how to compute the barcodes Bi(F ) = BHi(F ) for each i, directly from the
chain complex C(F ). We follow the 2005 paper of Carlsson and Zomorodian “computing
persistent homology.”

Let F be a finite simplicial filtration. Assume that the simplices of F are given a total
order such that σ < τ whenever dim(σ) < dim(τ) or (dim(σ) = dim(τ) and b(σ) < b(τ)).
Let [∂] denote the matrix representation of ∂ with respect to this order.

The main result is the following:
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Theorem 8.7 (Carlsson, Zomorodian ’05). Let R be the matrix obtained by applying the
standard reduction to [∂]. Then

Bi(F ) ={[rlj, clk) | ρk = j, rlj < clk, dim(σj) = i}
∪{[rlj,∞) | R∗,j = 0, ̸ ∃ k such that ρk = j, dim(σj) = i}.

This tells us that to compute the persistence barcodes of a filtration, it is enough to
reduce each of the boundary matrices.

Example 8.8. Consider the filtration F of Example 8.6. Reducing the boundary matrix [∂]
yields the following matrix:

R =

1 2 3 4 5 6 7



1 0 0 0 1 0 0 0
2 0 0 0 1 1 0 0
3 0 0 0 0 1 0 0
4 0 0 0 0 0 0 1
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0

Hence according to Theorem 8.7,

B0(F ) = {[1,∞), [2, 4), [3, 5)}
B1(F ) = {[6, 7)}.

The proof of Theorem 8.7 relies on the following fact:

Lemma 8.9. Let γ : F → F ′ be a morphism of finitely generated free 1-parameter persistence
modules. Then

(i) ker γ is a free direct summand of F ,

(ii) If B and B′ are bases for F and F ′ with [γ]B
′,B reduced, then

{Bj ∈ B | [γ]B
′,B

∗,j = 0}

is a basis for ker γ.

Sketch of proof. This follows from the fact that the non-zero columns of a reduced matrix
are linearly independent. We leave the details as an exercise.

Exercise 8.10. Fill in the details of the proof of Lemma 8.9.
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Proof of Theorem 8.7. R is computed from [∂] by a sequence of rightward column additions;
each such addition corresponds to a change of basis operation on Ci(F ) for some i. Each
such change of basis operation also corresponds to an upward row addition on [∂]. If for
each column addition we do when computing R, we also do the corresponding upwards
row operation, we obtain a matrix Q representing the map ∂ with respect to some choice
of ordered basis B for the module ⊕Ci(F ). Since row and column operations correspond,
respectively, to multiplication on the left and right by products of elementary matrices, and
since matrix multplication is associative, we can perform all of the row operations after all of
the column operations. By Proposition 8.2, an upward row addition on a reduced matrix
again yields a reduced matrix with the same pivots. Thus, Q is reduced and has the same
pivots as R.

Since Q is reduced, Lemma 8.9 implies that ker ∂ = ⟨C⟩, where

C := {bj ∈ B | Q∗,j = 0}.
Since the maps (∂i)i∈N define a chain complex, we have ∂2 = 0, so im ∂ ⊂ ker ∂. Thus, for
all indices j of non-zero columns, we have Qj,∗ = 0, because each column of Q represents an
element of im ∂, and hence an element of ker ∂, with respect to B.

Consider the submatrix Q′ of Q consisting of all non-zero columns and all rows j such
that column j is zero. The preceding paragraph implies that Q′ contains all non-zero entries
of Q, and hence is also reduced.

We claim that Q′ is a presentation matrix for ⊕iHi(F ). To see this, let

D = {bj ∈ B | Q∗,j ̸= 0}.
Note that for ∂̃ : ⟨D⟩ → ker ∂ the restriction of ∂ to the given domain and codomain, Q′

represents ∂̃ with respect to the bases C and D. Moreover, im ∂̃ = im ∂, so

coker δ̃ = ker ∂/ im ∂ ∼= (⊕i ker ∂i)/(⊕i im ∂i) ∼= ⊕iHi(F ).

Thus δ̃ is a presentation for ⊕iHi(F ), which establishes the claim.
Q′ inherits a block-diagonal structure from the block structure of [∂], where the blocks

of each matrix correspond to simplex dimension. In fact, the ith diagonal block of Q′ is a
reduced presentation matrix for Hi(F ).

Thus, Eq. (3) tells us how to read BHi(F ) of Q′, and hence off of Q. In particular, Eq. (3)
implies BHi(F ) is determined by the pivot entries of Q and the indices of zero columns of Q.
But as noted above, R and Q have the same pivot entries, and a column is zero in R if and
only if it is zero in Q. It follows that we can read the barcodes of Hi(F ) directly off of R
according to the claimed formula.

Exercise 8.11. For R as in the example of Example 8.8, compute Q and Q′ from R, as in
the proof of Theorem 8.7. Use Eq. (3) to read the barcodes of F off of Q′, and verify that
the result agrees with that of Example 8.8.

Exercise 8.12. Consider the simplicial filtration F : N→ Vec specified by the table below.
Compute all barcodes of HiF using Theorem 8.7. Also compute the reduced presentation
matrix Q′ for ⊕iHiF appearing in the proof of Theorem 8.7.
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simplex [1] [2] [3] [4] [2 3] [1 2] [1 3] [2 4] [1 2 3] [3 4] [2 3 4]

birth index 1 2 3 4 5 6 7 8 9 10 11

8.5 Practical Computation of Persistent Homology

We now turn, briefly, to the problem of fast, scalable, computation of persistent homology.
This has been a very active area of research over the last 15-20 years. In this time, several
tricks have been discovered that greatly impact the performance of persistent homology
computation, leading to several orders of magnitude speedup for some kinds of data. Some
of the most important progress has happened in just the past few years.

We will not aim to give a complete account of such progress, but rather just touch on a
few key ideas.

Pivot Arrays To complete the specification of the standard reduction (Algorithm 3) it
remains to explain how we check whether the conditional of the while loop is, and how we
find k when the conditional does hold. This can be done in constant time, provided we
maintain an 1-D array pivs of length m, where pivs[i] records which column reduced so far, if
any, has i as its pivot. We call pivs the pivot array. The full algorithm using the pivot array
is given below as Algorithm 5.

Algorithm 5 The standard reduction (In Detail)

Input: An m× n matrix D
Output: A reduced m× n matrix R obtained from D by rightward column additions
1: R← D
2: Initialize an array pivs of size n, with each entry set to null
3: for j = 1 to n do
4: while R∗,j ̸= 0 and pivs[ρj ] ̸= null do
5: k ← pivs[ρj ]

6: add −R(ρj ,j)

R(ρj ,k)
R∗,k to R∗,j .

7: if R∗,j ̸= 0 then
8: pivs[ρj ]← j

Column-Sparse Representation of Matrices In persistent homology computations, the
matrices involved are huge, but very sparse. It is therefore necessary to store the matrices in
a sparse format.

The standard reduction requires us to work with a sparse format allowing for

• fast access to the non-zero element of largest index in each column,
• fast column addition.
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The obvious thing to do, then, is to store each column as some sort of list of pairs (i, c),
where i is the index of a non-zero entry in the matrix, and c is the entry. For Z/2Z coefficents,
c is always 1, so one of course does not need to store c.

Early implementations of the persistent homology implemented this idea using linked lists.
Subsequently, [13] has studied the practical efficiency of a number of sparse data structures
for matrix columns, including linked lists, dynamically allocated arrays, lazy heaps, and (for
Z/2Z coefficients) bit trees. Dynamically allocated arrays and lazy heaps usually work best
in practice, and have emerged as the standard choices. add a brief

discussion of
lazy heaps.

Clearing Since the matrix [∂] considered above is a block matrix, reducing this matrix is
equivalent to reducing the matrix [∂i] for each i. Chen and Kerber [66] have observed that
the reduction of [∂i] can be used to expedite the reduction of [∂i−1]. The key is the following
lemma.

Lemma 8.13 (Clearing lemma). Let D1 and D2 be matrices with D1D2 = 0. Suppose that
R1 and R2 are reduced matrices obtained from D1 and D2, respectively, by left-to-right column
additions (e.g., via the standard reduction). If R2

∗,j has pivot i ̸= null, then R1
∗,i is 0.

Proof. Since column operations correspond to multiplication on the right by elementary
matrices, R2 = D2V for some unit upper triangular matrix V . We then have D1R2 =
D1D2V = 0, so in particular D1R2

∗,j = 0. This, together with the fact that R2
∗,j has pivot i,

implies that D1
∗,i is a linear combination of columns of D1 smaller index; specifically, we have

0 = D1R2
∗,j =

i∑
k=1

R2
k,jD

1
∗,j

so

D1
∗,i =

i−1∑
k=1

−R2
k,j

R2
i,j

D1
∗,j.

We will use this to show that R1
∗,i is a linear combination of columns of R1 of strictly smaller

index. Then, since non-zero columns of a reduced matrix are linearly independent, it must
be that R1

∗,i = 0, as desired.
Since R1 is obtained from D1 by rightward column additions, R1

∗,i is also a linear combi-
nation of columns of D1 of smaller index. Now R1 = D1W for some unit upper triangular
matrix, so D1 = R1W−1, where W−1 is the inverse of W . Since W−1 is also unit upper
triangular, this tells us that each column D1

∗,k is a linear combination of columns of R1 of
index at most k. It follows that R1

∗,i is indeed a linear combination of columns of R1 of index
strictly less than i.

Now suppose that Ri and Ri−1 are reduced matrices obtained from [∂i] and [∂i−1],
respectively, by left-to-right column additions (e.g., via the standard reduction). The
Lemma 8.13 implies that if we reduce the matrices [∂i] in order of decreasing i, then for
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each i > 1 and non-zero column of Ri, we can immediately zero out one column of Ri−1

before running the standard reduction to compute Ri−1. This shortcut is called the twist
optimization, or alternatively (and more commonly) clearing. It has been observed that for
typical persistent homology computations, this optimization can yield drastic speedups. This
is because empirically, most of the work in a naive application of the persistence algorithm
actually goes to zeroing out the columns that will in any case be zeroed out by clearing.
Virtually all state-of-the-art persistent homology codes make use of the clearing optimization.

Persistence Computation via Row Operations (the Dual Approach) If [∂i] is far
bigger than [∂i−1], then reducing [∂i] will usually be far more expensive than reducing [∂i−1],
and clearing as we have described it cannot be of much help. For example, we typically
compute Vietoris-Rips filtrations only up to some small homology dimension k (say, k = 2) so
that we only reduce [∂i] for i ≤ k + 1. For such i, the [∂i] grow quickly in size as i increases.

For this situation, one would like to have a dual form of clearing, where we leverage work
done in reducing [∂i−1] to expedite the reduction of [∂i]. Indeed, such dual clearing is possible,
provided we consider a dual form of the standard reduction. We now explain this.

As we have described it, the usual persistence algorithm applies the standard reduction to
the columns of a matrix. However, one can instead apply the standard reduction to the rows
of the matrix, using the reverse order on the rows and columns and hence only performing
upward row additions. Let us call this the upward reduction. Running the upward reduction
on a matrix D is equivalent to running the (rightward) standard reduction on PD′Q, where
the prime denotes transposition, and P and Q is are permutation matrices which reverse the
order of the rows and columns, respectively.

The use of the upward reduction to compute persistent homology is usually explained
in the literature in terms of cohomology [11, 82]. While the cohomological perspective can
be illuminating and useful, particularly because one sometimes wants to compute a set of
generators for cohomology, one needn’t consider cohomology to understand this approach to
barcode computation. The key result is this:

Proposition 8.14. Let R be obtained from [∂] by the upward reduction. Let τj denote the
pivot of the jth row pivot of R, i.e., the index of the smallest non-zero entry of the jth row,
if the row is non-zero, and null if the row is 0. Then we have the following variant of the
formula from Theorem 8.7.

Bi(F ) ={[rlj, clk) | τj = k, rlj < clk, dim(σj) = i}
∪{[rlj,∞) | Rj,∗ = 0, dim(σj) = i, ̸ ∃ k such that τk = j}.

The proof of Proposition 8.14 will use the following result:

Proposition 8.15. Given a matrix A, let N and N ′ both be normal forms of A obtained by
rightward column additions and upward row additions. Then the positions of nonzero entries
in N and N ′ are the same.
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Proof. Assume A is an m×n matrix. Regard A as a presentation matrix for an N-persistence
module M , with row and column labels given by rli = i and clj = m+ j. The result follows
from Eq. (2), which expresses BM in terms of presentation for M in normal form.

Proof of Proposition 8.14. It suffices to show that the barcode given in the formula is the
same as in the barcode in the formula of Theorem 8.7. We claim that the (rightward)
standard reduction and upward reduction yield matrices with the same pivot entries. Indeed,
we have seen that a column-wise reduced matrix can be put into normal form by upward
row operations without changing the pivots; symmetrically, a row-wise reduced matrix can
be put into normal form by rightward row operations without changing the pivots. But
Proposition 8.15 tells us that any two normal forms of [∂] obtained by rightward and upward
operations must have the same non-zero entries. This proves the claim. It follows that the
finite-length intervals provided by the formulae of Theorem 8.7 and this proposition are the
same. To see that the infinite-length intervals provided by the two formulae are the same, we
note that in each formulae, there is a copy of the interval [rlj,∞) if and only if j does not
appear as either a column or row index of a pivot entry.

Clearing also works for the row version of the persistence algorithm, provided we store
our matrices in a row-sparse format. Namely, we can leverage the following result:

Proposition 8.16. If R is obtained from [δ] by the upwards standard reduction and the pivot
of the row Ri,∗ is j ̸= null, then Rj,∗ = 0.

Proof. Since matrix transposition respects products (contravariantly), [∂i][∂i+1] = 0 implies

(Pi+1[∂i+1]
′Pi)(Pi[∂i]

′Pi−1) = Pi+1[∂i+1]
′[∂i]

′Pi−1 = Pi+1([∂i][∂i+1])
′Pi−1 = 0,

where each Pi is an order-reversing permutation matrix of appropriate size. Now we use the
earlier observation that the upwards reduction on [∂i] is equivalent to the standard reduction
on Pi+1[∂i]

′Pi and apply Lemma 8.13.

For Vietoris-Rips filtrations, the authors of PHAT [13] have observed that, empirically,
using clearing together with the row-wise variant of the persistence algorithm is MUCH faster
than using clearing in the column-wise variant, and MUCH faster than using the row-wise
variant without clearing. The (empirical) reason is that reduction of columns to zero tends
to dominate the cost of persistence computation.
Add a discussion of how to extend the standard reduction to compute a cycle basis for persistent homology.

Exercise 8.17. In this exercise, you will write computer code (e.g., in Python, or in whatever
language you like) which take as input distance matrix representing an ordered finite metric
space X, and number k ∈ Z, and output the barcodes BH0 Rips(X),BH1 Rips(X), . . .BHk Rips(X).
You will implement several variants of persistence computation and compare their efficiency
in some simple experiments. Specifically, implement four variants of persistence computation:

(i) Using the standard reduction and no clearing.
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(ii) Using the standard reduction and clearing.

(iii) Using the upwards reduction and no clearing.

(iv) Using the upwards reduction and clearing.

Next, create five data sets of size 50,100,150,200,250, each of which is a i.i.d. uniform sample
of the unit square in R2. Run each variant of the algorithm on each data set, with k = 1.
Report the timings of your computations visually, by making a graph. Record the contribution
to the total runtime of a)building the boundary matrix and b)reducing it. Which method
is most efficient? [HINT: Constructing the boundary matrices requires some thought. For
example, if we have a simplex [a, b, c], then we know [a, b] is a codimension-1 face of this, but
how do we know what row in the boundary matrix is indexed by [a, b]? There are different
ways to address this. One nice way is to work with a combinatorial number system, which
provides a total order on the set of unordered k-tuples from a set of n elements. Another add a ref-

erence for
this. In the
meantime,
a google
search
should suf-
fice.

approach (which is less efficient and less elegant, but maybe simpler to implement) is to use
a hash table.]

9 Stability of Persistent Homology

Overview The stability of persistent homology is arguably the most important mathe-
matical idea in TDA, beyond what is already present in classical topology and algebra. It
provides the core mathematical justification for the use of persistent homology in the study
of noisy data, underlies the statistical foundations of persistent homology [96], and provides
theoretical guarantees for methods to approximately compute persistent homology, as e.g. in
[57, 152]. It also has played a critical role in the development of multiparameter persistence.

In fact, there is not a single stability theorem for persistent homology, but several closely
related statements. The first version of the stability theorem, which concerned sublevel
persistent homology, was proven by Cohen-Steiner, Edelsbrunner, Harer in 2005 [72]; a
stability result for the offset persistent homology of point cloud data is an easy corollary.
Shortly after, it was discovered that the stability result of [72] also implies an analogous
stability result for Vietoris-Rips persistent homology [61]. We will discuss these results in
detail in Sections 9.3 and 9.4.

Also in 2009, Chazal et al. [60] introduced the algebraic stability theorem, a simple, elegant
abstract algebra theorem which immediately implies sublevel stability [72]. Subsequently,
algebraic stability has been revisited by several papers, leading to simpler proofs and more
general results. In Section 9.5, we will study algebraic stability in detail, and use it to prove
sublevel stability.

9.1 Extended Pseudometrics

The following relaxations of the usual definition of a metric are often useful in TDA:
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Definition 9.1.

(i) Given a (possibly large) set S, an extended pseudometric on S is a function d : S×S →
[0,∞] such that

1. d(x, x) = 0 for all x ∈ S,

2. d(x, y) = d(y, x) for all x, y ∈ S,

3. d(x, z) ≤ d(x, y) + d(x, z) for all x, y, z ∈ S.

(Here, extended means that the distance can be ∞, and pseudo-means that the distance
between two unequal objects can be zero.)

(ii) An extended pseudometric d such that d(x, y) > 0 whenever x ≠ y is called an extended
metric.

(iii) An extended pseudometric taking values in [0,∞) is called a pseudometric.

9.2 Bottleneck Distance

To explain the stability of persistent homology, we will need to define metric on both data
sets and on barcodes. We begin with the bottleneck distance a distance on barcodes, the
standard metric on barcodes in the TDA theory. For simplicity, I will give the definition
under the assumption that each interval in the barcodes we consider is of the form [b, d), for
b < d ∈ R. However, the definition of the distance extends to arbitrary barcodes without
difficulty; e.g., see [29, Definition 1.3].

Definition 9.2 (Matching). Given two sets S and T , we say a matching σ : S → T is a
simply bijection from S ′ → T ′ for some S ′ ⊂ S and T ′ ⊂ T . The definition extends without
difficulty to multi-sets [15, 16]. In particular, matchings of barcodes are well-defined.

Definition 9.3 (Bottleneck Distance). For barcodes C, D and δ ≥ 0, we say a matching
σ : C → D is a δ-matching if

(i) σ matches each interval in C ∪ D of length greater than 2δ

(ii) if σ([b, d)) = [b′, d′), then |b− b′| ≤ δ and |d− d′| ≤ δ.

We define the bottleneck distance dB by taking

dB(C,D) := inf {δ ≥ 0 | ∃ a δ-matching between C and D}.

Under the assumption above on our barcodes, the bottleneck distance is a metric. For
barcodes which are arbitrary multisets of intervals in R, the bottleneck distance is an extended
pseudometric.
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9.3 Stability of Sublevel Persistence

Definition 9.4. For T be a topological space and γ, κ : T → R any functions, we define the
sup-norm distance between γ and κ by

d∞(γ, κ) := sup
x∈T
|γ(x)− κ(x)|.

Theorem 9.5 (Sublevel Stability). For any topological space T , functions γ, κ : T → R and
i ≥ 0 with HiS↑(γ) and HiS↑(κ) both p.f.d., we have that

dB(Bi(γ),Bi(κ)) ≤ d∞(γ, κ).

We will prove Theorem 9.5 in Section 9.5, as an application of algebraic stability.

9.4 Stability of Persistent Homology for Point Cloud and Metric
Data

We previously defined the offset filtration O(P ) of a subset P of Rn, but the definition makes
equal sense for P a subset of any fixed metric space Z. We will use the more general definition
in what follows.

Definition 9.6. The Hausdorff distance dH(P,Q) between two subsets P , Q of a metric
space Z is given by

dH(P,Q) = inf{δ > 0 | P ⊂ O(Q)δ and Q ⊂ O(P )δ}.

In general, dH(P,Q) can be infinite, but if P and Q are compact (e.g., finite), then
dH(P,Q) is finite. In fact, the Hausdorff distance is a metric on finite metric spaces.

Theorem 9.7 (Hausdorff Stability). For any metric space Z, finite subsets P,Q ⊂ Z, and
i ≥ 0, we have dB(BHiO(P ),BHiO(Q)) ≤ dH(P,Q).

Proof. For P ⊂ Z finite, S↑(dP ) = O(P ), i.e., the sublevel filtration of the distance function to
P is equal to the union-of-balls filtration of P . An easy calculation shows that d∞(dP , dQ) ≤
dH(P,Q). The result now follows by applying Theorem 9.5 to the functions dP and dQ.

Remark 9.8. Since the offset, Čech, and Delaunay filtrations of finite Euclidean data sets
all have the same barcodes (Proposition 5.41), Theorem 9.7 also implies a Hausdorff stability
result for the Čech and Delaunay filtrations of finite point sets in Rn.

Definition 9.9. The Gromov-Hausdorff distance dGH(P,Q) between metric spaces P and Q
is given by

dGH(P,Q) = inf
γ:P→Z
κ:Q→Z

dH(γ(P ), κ(Q)),

where γ and κ range over all isometric (i.e. distance preserving) embeddings into an (arbitrary)
common metric space Z.
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Just as with the Hausdorff distance, dGH(P,Q) can be infinite, but if P and Q are compact
(e.g., finite), then dGH(P,Q) is finite, and the Gromov-Hausdorff distance descends to a metric
on isomorphism classes of finite metric spaces. One can also define dGH without regards to
an embedding, using the notion of a correspondence, but we will not discuss this here. For a
thorough introduction to the Gromov-Hausdorff distance, see [47].

Theorem 9.10 (Gromov-Hausdorff Stability [61]). For any finite metric spaces P,Q and
i ≥ 0, we have

dB(BHi Rips(P ),BHi Rips(Q)) ≤ dGH(P,Q).

Proof. It is a standard fact that for P and Q compact, the infimum appearing in the definition
of dGH(P,Q) is in fact a minimum. (This is not necessary to carry out the proof but it
simplies notation.) Moreover, it is clear that for the triplet (Z, γ, κ) realizing this minimum,
we may take Z = γ(P ) ∪ κ(Q). In particular, if P and Q are finite, we may assume Z is also
finite. We now fix such a triplet with Z finite, and ordering the elements of Z arbitrarily,
write Z = {z1, . . . , z|Z|}.

We define a map f : Z → R|Z| by f(y) = (|y − z1|, |y − z2|, . . . , |y − z|Z||). Let us
henceforth consider R|Z| as a metric space with the ℓ∞-metric. Then f is easily checked to be
an isometric embedding. Since the Hausdorff distance is preserved by isometric embedding,
we have

dH(f ◦ γ(P ), f ◦ κ(Q)) = dH(γ(P ), κ(Q)) = dGH(P,Q).

Theorem 9.7, gives that

dB(BHiO(f◦γ(P )),BHiO(f◦κ(Q))) ≤ dH(f ◦ γ(P ), f ◦ κ(Q)) = dGH(P,Q).

Therefore, by Remark 5.18 it suffices to observe that O(f ◦γ(P )) ≃ Rips(P ) and O(κ◦γ(P )) ≃
Rips(Q). Since ℓ∞-balls in R|Z| are convex, Theorem 5.25 implies that O(f ◦ γ(P )) ≃
Čech(f ◦ γ(P )), where we now define the Čech filtration using ℓ∞ balls in R|Z|; similarly for
Q. But it is easily checked that Čech and Rips complexes are equal in (R|Z|, ℓ∞). Thus

O(f ◦ γ(P )) ≃ Čech(f ◦ γ(P )) = Rips(f ◦ γ(P )) ∼= Rips(P ),

and similarly for Q.

Exercise 9.11. Check that Čech and Rips complexes are equal in (Rn, ℓ∞), as required by
the above proof.

Remark 9.12. The argument we have given is the original proof of Theorem 9.10 appearing
in [61]. Since then, several other proofs have been discovered; see [29, Section 6] for a
discussion of other approaches, and for a discussion of how to strengthen the result to one
formulated purely on the level of filtrations.
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9.5 Algebraic Stability

9.5.1 Interleavings

For any category C, and δ ∈ [0,∞), we define a functor (−)δ : CR → CR as follows: For F : R→
C, F δ : R → C is given by F δ

r = Fr+δ and F δ
r,s = Fr+δ,s+δ. For a natural transformation

γ : F → G, γδ : F δ → Gδ is given by F = γδr = γr+δ.
Note for any F : R → C, the internal maps {Fr,r+δ}r∈R assemble into a morphism

φF,δ : F → F δ.

Definition 9.13. A δ-interleaving between functors F,G : R→ C is a pair of morphisms

γ : F → Gδ κ : G→ F δ

such that
κδ ◦ γ = φF,2δ γδ ◦ κ = φG,2δ.

If there exists such a pair, we say F and G are δ-interleaved.

Said differently, an interleaving is a collection of linear maps

{γr : Fr → Gr+δ}r∈R {κr : Fr → Gr+δ}r∈R

such that “everything in sight commutes,” i.e., the infinite diagram of vector spaces built
from F , G, γ, and κ is commutative. One can in fact take this interpretation as a formal
definition of interleavings, as, e.g., in [29, Definition 3.1]. In TDA, we typically consider
interleavings with C ∈ {Vec,Top,Set}.

We define the interleaving distance dI between functors F,G : R→ C by

dI(F,G) = inf {δ | There exists a δ-interleaving between F and G}.

dI is an extended pseudometric on such functors.

Remark 9.14. We can define δ-interleavings and the interleaving distance on N-indexed or
Z-indexed functors in essentially same way, and for such functors, it is easier to express an
interleaving pictorally. For example, a 1-interleaving between Z-persistence modules F , G is
a commutative diagram of vector spaces of the following form, extending F and G:

· · · F−2 F−1 F0 F1 F2 · · ·

· · · G−2 G−1 G0 G1 G2 · · ·

Similarly, a 2-interleaving between F and G is a commutative diagram

· · · F−2 F−1 F0 F1 F2 · · ·

· · · G−2 G−1 G0 G1 G2 · · ·
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9.5.2 Algebraic Stability

Recall from Section 4.3.3 that a persistence module M is said to be p.f.d. if dimMr <∞ for
all r. By Theorem 4.7, a p.f.d. persistence module M : R→ Vec has a well-defined barcode.

Theorem 9.15 (Isometry Theorem). For any persistence modules M , N , we have

dB(BM ,BN) = dI(M,N).

To prove Theorem 9.15, one proves that

dB(BM ,BN) ≤ dI(M,N) (4)

and, conversely, that
dB(BM ,BN) ≥ dI(M,N). (5)

The first inequality is called as the (forward) algebraic stability theorem, and the second is
called converse algebaic stability. Forward algebraic stability is the more difficult direction,
but was proven first, in 2009 [60, 63]. We briefly discuss several proofs of forward algebraic
stability below, in Remark 9.17.

Converse algebraic stability first appeared in 2011 [125]. The initial version of this work
was done before the structure theorem for R-indexed persistence modules [78] was known,
and relied on a version of the structure theorem for Z-indexed modules [170]. But given the
structure theorem for R-indexed modules, the proof of converse algebraic stability is quite
straightforward; see Exercise 9.16 below. The name “isometry theorem” is due to Bubenik
and Scott [45], who also independently proved a version of converse stability.

Forward algebraic stability is extremely useful in TDA; it is used frequently in the
statistical foundations of TDA and also in the computational theory. The full isometry
theorem is of interest primarily because it suggests an avenue for extending fundamental TDA
results from the 1-parameter persistence setting to the multiparameter setting, and beyond.
To explain, many key results in TDA are stated using the bottleneck distance dB, but dB
does not admit a naive generalization to settings where we have no barcode. In particular, it
does not generalize to multiparameter persistence modules. The interleaving distance dI , on
the other hand, generalizes readily to the multiparameter setting and to other generalized
persistence settings. As we will see later in the course, we can use dI to develop TDA theory
in such generalized settings.

Exercise 9.16 (Proof of converse algebraic stability).

(i) Show that converse algebraic stability (Eq. (5)) holds in the special case that M and
N are both interval modules or trivial modules.

(ii) Check that if we have sets of persistence modules (M s)s∈S, (N s)s∈S such that M s and
N s are δ-interleaved for each s ∈ S, then ⊕s∈SM s and ⊕s∈SN s are δ-interleaved.

(iii) Show that converse algebraic stability follows from these two facts.
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We next show that the stability of sublevel persistent homology (Theorem 9.5) follows
almost immediately from the algebraic stability theorem.

Proof of Theorem 9.5 (sublevel stability). It is easy to check that for γ, κ : W → R with
d∞(γ, κ) = δ, we have S↑(γ)r ⊂ S↑(κ)r+δ and S↑(κ)r ⊂ S↑(γ)r+δ for each r ∈ R. Thus, S↑(γ)
and S↑(κ) are δ-interleaved, with the interleavings given at each index by inclusions. Suppose
the interleaving morphisms are called f and g. Then applying ith homology to each linear
map fr and gr yields a δ-interleaving Hif , Hig between HiS↑(γ) and HiS↑(κ). The algebraic
stability theorem (Eq. (4)) then gives the result.

.

Remark 9.17 (Proofs of Forward Algebraic Stability). The original proof of algebraic
stability [60, 63] is an algebraic adaptation of the proof of stability for sublevel filtrations
appearing in [72]. Subsequently, several other proofs have appeared; I will mention three
proofs which improve on the original in various ways.

First, in 2013, [15] gave a new proof showing that algebraic stability, ostensibly a result
about pairs of morphisms of persistence modules, in fact follows immediately from a general
result about single morphisms of persistence modules called the induced matching theorem.
This proof constructs a δ-matching of barcodes from a δ-interleaving in a simple, explicit
way. We will study this proof in detail in Section 9.6.

In 2016, Bjerkevik [26] gave a beautiful new proof of algebraic stability which casts the
problem in terms of matrix algebra and makes use of Hall’s marriage theorem, a classical result
in combinatorics. It is shown in [26] that this proof generalizes almost immediately to certain
multiparameter algebraic stability problems where the prior approaches are less effective.
The proof strategy has also played an important role in subsequent work on multiparameter
persistence [20, 37].

A third proof from 2021 [27] establishes algebraic stability for finitely presented persistence
modules by using a presentation-theoretic approach. The main advantage of this approach
is that it immediately extends immediately to give novel ℓp-type stability results in the
1-parameter and 2-parameter settings, including an ℓp-extension of the isometry theorem
for finitely presented modules. We give an outline of this approach to algebraic stability in
Section 9.7.

9.6 The Single-Morphism Approach to Algebraic Stability

Here, we outline the single-morphism approach to algebraic stability introduced in [15, 16].
The approach is based on a construction which associates to any morphism f : M → N of
p.f.d. R-persistence modules a simple, explicit induced matching of barcodes χf : BM → BN .
To explain how χf is defined, let us assume for simplicity that each interval in each barcode
is of the form [b, d). (This assumption is usually satisfied in practice, and in any case is not
actually needed, but it allows us to simplify notation.)
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Definition 9.18. A morphism of persistence modules f : M → N is a monomorphism
(respectively, an epimorphism) if for each r ∈ R, fr : Mr → Nr is injective (respectively,
surjective).

epimorphisms were also considered when we talked about presentations, so this should be moved ahead in the notes and
the redundancy should be eliminated.

To define the matching of barcodes induced by a morphism of persistence modules, we
first define it in the special case of a monomorphism or an epimorphism. First, let q : M → N
be an epimorphism. To define the induced matching χq, we separately match intervals in BM
and BN of the form [b, ·) for fixed b ∈ R. (In terms of the persistence diagram visualization
of barcodes, this corresponds to matching points along the same vertical line.) We match
the longest such interval in BM to the longest such interval in BN , the second-longest such
interval in BM to the second-longest such interval in BN , and so on, until we run out of such
intervals in one of the barcodes. Doing this for each b ∈ R yields the matching χq.

Now let j : M → N be a monomorphism. To define χj, we separately match intervals
in BM and BN of the form [·, d) for fixed d ∈ R. (In terms of the persistence diagram
visualization of barcodes, this corresponds to matching points along horizontal lines.) We
match the longest such interval in BM to the longest such interval in BN , the second-longest
such interval in BM to the second-longest such interval in BN , and so on, until we run out of
such intervals in one of the barcodes. Doing this for each d ∈ R yields the matching χj.

To define the matching induced by arbitrary morphism f : M → N of p.f.d. persistence
modules, we first note that f has a canonical epi-mono factorization f = jf ◦ qf , where
qf : M → im f is given by (qf)r(x) = fr(x) and jf : im f → N is given by (jf)r(x) = x
for all r ∈ R. We also note that there is a natural notion of composition of matchings
(see Definition 9.2). Explicitly, given matchings σ : S → T and τ : T → U , the composite
matching τ ◦ σ : S → U matches s to u if and only if there exists t ∈ T such that σ(s) = t
and τ(t) = u. Now, given an arbitrary morphism f : M → N of p.f.d. R-persistence modules,
we define χf := χjf ◦ χqf . (Recall from Exercise 6.15 and Definition 6.11 that im f is a
well-defined persistence module. If M is p.f.d., then so is im f . Hence im f has a barcode, so
this definition χf is indeed well formed.)

In the presence of multiple copies of the same interval, one needs to be careful about the
definition of these matchings to ensure that the composite is uniquely defined. In short, for
each barcode, one fixes an order on the copies of each interval in the barcode, and matches
the copies in that order.

The following is a single-morphism generalization of the algebraic stability theorem.

Theorem 9.19 (Induced Matchings [15]). Suppose χf [b, d) = [b′, d′).

(i) b′ ≤ b < d′ ≤ d.

(ii) If each interval in Bker f has length at most δ, then

|d− d′| ≤ δ

and χf matches each interval in BM of length greater than δ.
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(iii) Dually, if each interval in Bcoker f has length at most δ, then

|b− b′| ≤ δ

and χf matches each interval in BN of length greater than δ.

Partial Functoriality of Induced Matchings Let Barc denote the category whose
objects are barcodes and whose morphisms are matchings. The matchings χf are not
functorial (i.e., they do not define a functor VecR → Barc.) However, they are functorial
on the subcategory of VecR consisting of only monomorphisms (i.e., morphisms that are
injective at each index.) That is, if j : M → N and j′ : N → O are monomorphisms of
persistence modules, then χj′◦j = χ′

j ◦ χj. The same is true for epimorphisms.

Exercise 9.20. Check that the induced matchings are indeed functorial on monomorphisms,
as claimed above.

Outline of Proof of the Induced Matching Theorem We now outline the proof of
Theorem 9.19, relegating many of the steps to exercises. We first establish the following
structure theorem for submodules and quotients of persistence modules. Again, for simplicity
we state the result under the assumption that all intervals in the barcodes are of the form
[b, d).

Proposition 9.21 (Structure theorem for submodules and quotients).

(i) Given a monomorphism j : M → N , χj : BM → BN matches each interval in BM , and
for each [b, d) ∈ BM , we have χj[b, d) = [b′, d) for some b′ ≤ b.

(ii) Given an epimorphism q : M → N , χq : BM → BN matches each interval in BN , and
for each [b, d) ∈ BN , we have χq[b, d

′) = [b, d) for some d′ ≥ d.

Exercise 9.22. Prove Proposition 9.21 (i), as follows: Fix b < d ∈ R ∪ {∞}.

(i) Consider the functor F : VecR → Vec which sends a persistence module Z to
kerZb,d/(

⋃
b<d′<d kerZb,d′), with the action of F on morphisms defined in the expected

way (see Exercise 2.39 (i)). Show that dimF (Z) is the number of intervals in BZ of the
form [b′, d) with b′ ≤ b.

(ii) Show that F preserves monomorphisms.
(iii) It follows that the number of intervals in BM of the form [b′, d) with b′ ≤ b is at most

the number of such intervals in BN . Show that this implies the claimed result.

Proposition 9.21 (ii) follows from Proposition 9.21 (i) by a simple duality argument, which
we will not give here. Alternatively, one can just dualize the proof of Proposition 9.21 (i).

Exercise 9.23. Use Proposition 9.21 to prove Theorem 9.19 (i).
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We next establish Theorem 9.19 in the case that f is a monomorphism. In this case,
ker f is trivial, so Theorem 9.19 (ii) follows immediately from Proposition 9.21 (i). For f a
monomorphism, the proof of Theorem 9.19 (iii) proceeds by a sandwiching argument: Let the
submodule N δ ⊂ N be defined by

N δ
r = {n ∈ Nr | n = Nr−δ,r(n

′) for some n′ ∈ Nr−δ.}

Exercise 9.24. Show that if f is a monomorphism such that each interval in Bcoker f has
length at most δ, then N δ ⊂ im f .

Noting that f restricts to an isomorphism M → im f , we thus have a factorization by
monomorphisms

N δ ↪→M
f
↪−→ N

of the inclusion j : N δ ↪→ N . We may think of this as a “sandwiching” of M in terms of N .
BNδ is obtained from BN by shortening each interval of BN on the left side by δ (with

intervals of length less than δ removed altogether). The induced matching χj : BNδ ↪→ BN is
thus especially simple. By the functoriality of matchings induced by monomorphisms, the
sequence of induced matchings

BNδ ↪→ BM
χf

↪−→ BN
factors χj. Applying Proposition 9.21 to this factorization yields Theorem 9.19 (iii).

Exercise 9.25. Fill in the details of the part of the argument given in the last sentence.

Having established Theorem 9.19 (iii) for monomorphisms, a duality argument gives
Theorem 9.19 (ii) for epimorphisms. Alternatively, this can be shown by dualizing the proof
of Theorem 9.19 (iii). For epimorphisms, Theorem 9.19 (iii) is immediate from Proposi-
tion 9.21 (ii).

The following exercise then completes the proof of the induced matching theorem:

Exercise 9.26. Assuming that Theorem 9.19 (ii) and (iii) hold when f is either a monomor-
phism or an epimorphism, show that they in fact hold for arbitrary f .

Remark 9.27. The categorical structure on Barc can be used to give a slick formulation
of the induced matching theorem, which transparently expresses the sense in which passage
from a persistence module to its barcode preserves categorical structure [16].

Algebraic Stability from Induced Matchings It remains to explain how the algebraic
stability theorem follows from the induced matching theorem. The key observation is the
following, which is an easy exercise:

Exercise 9.28. Let f : M → N(δ) be a δ-interleaving morphism. Then each interval in each
of the barcodes Bker f and Bcoker f has length at most 2δ.
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Note that for any δ ≥ 0, and p.f.d. persistence module N , we have an obvious bijective
matching rδ : BN(δ) → BN .

To prove the algebraic stability theorem from the induced matching theorem, we apply
the latter to the δ-interleaving morphism f : M → N(δ), using Exercise 9.28; this gives us
that rδ ◦ χf : BM → BN is a δ-matching. Algebraic stability now follows.

9.7 A Presentation-Theoretic Approach to Algebraic Stability

We conclude this section by briefly outlining the presentation-theoretic approach to algebraic
stability for finitely presented R-indexed modules, following [27]. First, one shows that δ-
interleaved modules M and N have presentations PM and PN with the same underlying matrix
and row/column labels that differ by at most δ; this is done by regarding an interleaving
between M and N as a single diagram Z of vector spaces, and taking a presentation of Z; this
presentation induces presentations of PM and PN with the desired property. One has to check
that a finite presentation of Z exists, but this follows straightforwardly from Proposition 6.43.

Using an idea of [74, 156], one then linearly interpolates between the row and column
labels of PM and PN to get a sequence of presentations PM = P1, . . . Pk = PN , such that for
each i, Pi and Pi+1 can be put into normal form by the same sequence of admissible row and
column operations. Letting Mi denote a persistence module presented by Pi, this yields a Later, I

would like
to add more
detail about
this step.
The point is
the the or-
ders on the
column la-
bels between
neighbor-
ing presen-
taitons are
compati-
ble in a cer-
tain way.
To explain
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requires a
bit of in-
vestment in
notation.

bound on dB(Mi,Mi+1) in terms of the maximum difference between row/column labels of
Mi and Mi+1. Algebraic stability then follows from the bound

dB(M,N) ≤
k−1∑
i=1

dB(Mi,Mi+1),

which holds by the triangle inequality.

9.8 Wasserstein Stability

The bottleneck distance depends only on the maximum difference between endpoints of
matched pairs of intervals, and to the maximum length of an unmatched interval. This is
illustrated by the following example:

Example 9.29. Consider the barcodes

C = {[0, 10), [0, 3)}, D = {[0, 9), [0, 3)}, E = {[0, 9), [1, 2), [10, 12), [20, 22)}.

Intuitively, C and D are more similar than C and E , but dB(C,D) = dB(C, E) = 1.

One often wishes to have a distance that is more sensitive to the smaller differences
between barcodes. The standard such distances are the Wasserstein distances. Let B and C
be barcode with finitely many intervals, each of the form [a1, a2), where a1 < a2 ∈ R ∪ {∞}.
In what follows it will be convenient to identify the interval [a1, a2) with the point a :=
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(a1, a2) ∈ R × R ∪ {∞}. Let m(a) =
(
a1+a2

2
, a1+a2

2

)
. We define the p-Wasserstein distance

between B and C to be

dpW(B, C) := min
σ:B̸→C

 ∑
σ([a1,a2))=[b1,b2)

|a1 − b1|p + |a2 − b2|p +
∑

[a1,a2)∈B∪C unmatched

2|a1 −m(a)|p
 1

p

.

As with the bottleneck distance, the definition extends without difficulty to arbitrary
pairs of barcodes. It is not difficult to check that for any pair of barcodes B and C,

dB(B, C) = lim
p→∞

dpW(B, C).

We therefore sometimes write dB as as d∞W . Because they are more sensitive to small differences
between matching intervals, the distances dpW with p small (say p = 1 or p = 2) are often
preferred to dB in practical computational applications; see [27, Section 1] for a list of
references about computational applications of dpW .

Exercise 9.30. Show that for p ≤ q ∈ [1,∞], we have dqW ≤ dpW .

Remark 9.31. Other variants of the definition of dpW appear in the literature [44, 73]; these
differ from our definition by at most a factor of 2. To the best of my knowlege, the version
given here first appeared in [54] for the case p = 1, an in [143] for arbitrary p. In view of
Theorem 9.32 below, this version is arguably the most natural one.

In 2020, Turner and Skraba [156] introduced a very natural and elegant ℓp-version of the
sublevel stability theorem, using the p-Wasserstein distance with p ∈ [1,∞] and cellular (or
simplicial) homology. We now explain this. Let X be a finite CW-complex, and let cells(X)
denote the set of cells of X. If σ and τ are (open) cells of X with σ ∩ ∂τ ̸= 0, then we
write σ ≤ τ . We say a function γ : cells(X) → R is monotone if γ(σ) ≤ γ(τ) whenever
σ ≤ τ . Ordering cells(X) arbitrarily, now write cells(X) = {σ1, . . . , σm}. For any function
f : cells(X)→ R, let ∥f∥p = ∥(f(σ1), f(σ2), . . . , f(σ)m∥p.

Theorem 9.32 (Wasserstein Stability of Persistent Homology [156]). For any finite CW
complex X, monotone functions γ, κ : cells(X)→ R, p ∈ [1,∞], and i ≥ 0, we have

dpW(BHiF(γ),BHiF(κ)) ≤ ∥γ − κ∥p,

where F(−) denotes the cellular sublevel filtration.

The proof of this theorem is similar to part of the presentation-based proof of algebraic
stability outlined in Section 9.7, and in particular, uses the same interpolation argument.

To illustrate the utility of Theorem 9.32, consider a pixelated grayscale image γ, regarded
as a function on a cellular decomposition of a rectangle, where each top-dimensional cell σ is
a pixel with γ(σ) the pixel intensity, and each lower-dimensional cell τ is an intersection of
the closures of top-dimensional cells {σi} with γ(τ) = maxi γ(σi). Suppose γ′ is obtained by
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changing the intensity value of just one pixel by a large amount. The usual sublevel stability
theorem (Theorem 9.5) is not useful for comparing the barcodes of the cellular sublevel
filtrations of γ and γ′. In contrast, 1-Wasserstein between these barcodes is sensitive to the
fact that only one pixel value has changed, and gives a more informative bound.

Remark 9.33. A 2010 paper of Cohen-Steiner et al. gives a different Wasserstein stability
result for sublevel persistent homology [73]. This concerns Lipschitz functions on triangulable,
compact metric spaces, and uses a different variant of p-Wasserstein distance on barcodes.

Remark 9.34. It is natural to wonder whether there is an ℓp version of the isometry theorem
for dpW which extends Theorem 9.32. [27] gives such a result for finitely presented modules.
It is likely that this extends to p.f.d. modules, but to my knowledge, this has not been
attempted.

10 Basics of Multiparameter Persistent Homology

We now finally turn in earnest to multi-parameter persistent homology. We will begin in this
section with a quick treatment of some of the basics of the subject. The text of this section
is adapted from [35, Sections 1 and 4].

10.1 The Multiparameter Persistence Pipeline

To develop multiparameter persistent homology, we will need a suitably general definition of
a filtration, extending Definition 4.1; this is analogous to the general definition of persistence
module given in Definition 6.1.

Definition 10.1. Given a poset P , a (P -indexed) filtration is a functor F : P → Top whose
internal maps Fx,y are each inclusions. We sometimes also call F a P -filtration. In the case
that

P = T1 × T2 × · · · × Tn
where each Ti is a totally ordered set, we also call F an n-parameter (or multiparameter)
filtration. A 2- and 3-parameter filtrations are called bifiltrations and trifiltrations, respectively.

One would like to generalize the persistent homology pipeline from the beginning of
Section 4. The first two arrows of the pipeline generalize without difficulty, as follows:

Data ⇒ Multiparameter filtration
Homology
======⇒ Multiparameter Persistence Module

Indeed, applying homology to each space and each map in a multiparameter filtration
yields a multiparameter persistence module, exactly as in the 1-parameter case. And there
are many natural ways of constructing multiparameter filtrations from data. We have already
seen one example:
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Example 10.2. The unnormalized multicover bifiltration of Definition 1.1 is a [0,∞)op ×
[0,∞)-indexed bifiltration.

As a second example, we have the following density-sensitive extension of the Rips
filtration:

Definition 10.3. For X a metric space, r ≥ 0, and d ≥ 0, let DRips(X)d,r be the maximal
subcomplex of Rips(X)r whose vertices have degree at least d − 1 in the 1-skeleton of
Rips(X)r. Varying r and d, we obtain a bifiltration DRips(X) : [0,∞)op × [0,∞), the degree-
Rips bifiltration [126].

Figure 10.1: Part of the degree-Rips bifiltration of 10 points in R2. The columns correspond to
parameters d = 5, 3, 1.

We will see more examples of multiparameter filtrations constructed from data in Sec-
tion 12.

10.2 The Difficulty of Defining Barcodes of Multiparameter Per-
sistence Modules

We now turn to the critical question: Is there any good way to define the barcode of a
multiparameter persistence module? As we will see, there are several illuminating ways one
can approach this question.

10.2.1 The Krull-Schmidt Theorem

We begin with some good news: As in the 1-parameter case, p.f.d. multiparameter persistence
modules decompose into indecomposable summands in an essentially unique way.
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Definition 10.4. For C any small category, a functor M : J → Vec is said to be indecom-
posable if whenever M ∼= M1 ⊕M2, we have that either M1 = 0 or M2 = 0.

Theorem 10.5. Consider a small category C and functor M : C → Vec.

(i) If M is p.f.d., then there exists a collection of indecomposables {Mλ}λ∈Λ such that

M ∼=
⊕
λ∈Λ

Mλ.

(ii) If

M ∼=
⊕
λ∈Λ

Mλ ∼=
⊕
γ∈Γ

Mγ

with each Mλ and Mγ indecomposable, then there exists a bijection σ : Λ→ Γ such that
Mλ ∼= Mσ(λ) for all λ ∈ Λ.

In view of this result, understanding the algebraic structure of p.f.d. persistence modules
amounts to understanding the structure of the indecomposable modules.

The proof of this result is not trivial. I plan to cover the proof later in the course. But in
an important special case, the proof of Theorem 10.5 is easy:

Proof of Theorem 10.5 (i) for the case where Ob C is finite. We call
∑

x∈ObC dimMx as the
total dimension of M . We proceed by induction on the total dimension. The base case is
that the total dimension is at most 1; here the result holds trivially. For the induction step,
assume that M has a non-trivial direct sum decomposition M = M ′ ⊕M ′′. Then the total
dimension of both M ′ and M ′′ is less than that of M . Applying the induction hypothesis
yields the result.

Remark 10.6 (History of Theorem 10.5). In the generality given here, Theorem 10.5 (i) was
sketched in work of Gabriel and Roiter in 1992 [101], follows from work of Crawley-Boevey
from 1994 [77], and was given a short direct proof by Crawley-Boevey and Botnan from 2018
[34]. Theorem 10.5 (ii) follows from a classical result of Azumaya [10].

10.2.2 Interval-Decomposable Persistence Modules

To continue discussing the difficulty of defining barcodes of multiparameter persistence
modules, it will help introduce a class of persistence modules with especially simple algebraic
structure, called interval decomposable modules ; these play a big role in MPH.

To give the definition, we first extend the definition of an interval (Definition 4.1 (i)) to
posets:

Definition 10.7.
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(i) An interval in a poset P is a non-empty subset I of P satisfying the following two
conditions:

1. Convexity: If s, t ∈ I and s ≤ u ≤ t, then u ∈ I,

2. Connectivity: For all s, t ∈ I, there exist

s = u0, . . . , um = t ∈ I

such that ui and ui+1 are comparable for all 0 ≤ i < m.

(ii) A barcode (in P ) is a multiset of intervals in P .

The definition of an interval module (Definition 10.8) now extends verbatim to posets:

Definition 10.8. For P a poset and I ⊂ T the interval module KI is the persistence module
such that

KI
r =

{
K if r ∈ I,
0 otherwise.

KI
r,s =

{
IdK if r ≤ s ∈ I,
0 otherwise.

Definition 10.9. A P -module M is interval-decomposable if there exists a multiset BM of
intervals in P such that

M ∼=
⊕
I∈BM

kI .

As in the 1-parameter case, we call BM the barcode of M .

In view of Theorem 10.5 (ii), the barcode of an interval-decomposable is well-defined
whenever it exists. However, it turns out that for n ≥ 2, not all n-parameter persistence
modules are interval-decomposable:

Exercise 10.10. Show that the following persistence modules are indecomposable, hence
not interval decomposable. (All vector space endomorphisms are the identity.)

(i)

k k2 k2

0 k k2

0 0 k

(
0

1

)
(

1

1

) (
1

1

)
(

1

0

)

(ii)

k k2 k

0 k k

(
0

1

)
(1 1)

(
1

0

)
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In fact, drawing on classical ideas from quiver representation theory, we will see in
Section 19 that the space of isomorphism classes of indecomposables that can arise in the
multiparameter setting is enormously complex. In particular, there is no way of parameterizing
this space by collections of nice regions in the parameter space, as in the 1-parameter setting.
Thus, while one could define the barcode of a multiparameter parameter persistence module
to be the multiset of isomorphism types of its incomposable summands, this object is generally
too complex to work with in practice.

10.2.3 No Good (Unsigned) Barcodes

One might nevertheless hope that there is a good way to define the barcode of a multiparameter
persistence module M : P → Vec as a collection of regions in P . But this turns out not to
be possible, in the following sense.

Definition 10.11. A barcode B in P is a good barcode of M if for all x ≤ y ∈ P we have

Rank(Mx,y) = |{S ∈ B | x, y ∈ S}|,

i.e., the rank of the map Mx,y is the number of elements of B containing both x and y.

Given how barcodes of 1-parameter persistence modules are usually interpreted and used
in TDA, the goodness condition of Definition 10.11 is quite natural. However, the following
proposition shows that a good barcode of M need not exist.

Proposition 10.12. For P = {0, 1, 2} × {0, 1, 2}, let M be the following P -persistence
module:

k k 0

k k2 k

0 k k

Id

[1,0]T

Id

[1,1]

[1,0]

[0,1]T

Id

Id

(6)

There does not exist a good barcode of B.

Proof. If B is a good barcode of M , then since

Rank(M(0,1) →M(2,1)) = Rank(M(0,1) →M(1,2)) = Rank(M(1,0) →M(2,1)) = 1,

B must contain intervals I, J,K (not necessarily distinct) with

(0, 1), (2, 1) ∈ I, (0, 1), (1, 2) ∈ J, (1, 0), (2, 1) ∈ K.

But since dimM0,1 = dimM2,1 = 1, we then have I = J = K, implying that (1, 0), (1, 2) ∈ I.
This contradicts the fact that Rank(M(1,0) →M(1,2)) = 0.
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Exercise 10.13. Do good barcodes exist for the modules of Exercise 10.10. If so, what are
they?

But as I have mentioned in the introduction, recent work [36, 120] has shown that if we
allow the elements of the barcode to be signed subsets of P (i.e., to be labeled positive or
negative) then it is possible to give a well-behaved definition of the barcode, which encodes
ranks in a way analogous to Definition 10.11. We will discuss this in detail later in the course.

11 Invariants of Multiparameter Persistence Modules

Definition 11.1.

(i) An invariant of a collection C of persistence modules is a function f : C → S for some
set S, such that f(M) = f(M ′) whenever M ∼= N .

(ii) The invariant f is said to be complete if, conversely, f(M) ̸= f(M ′) whenever M ̸∼= N .

To extend applications of persistent homology to the multiparameter-parameter setting,
one natural thing to do is to work with (incomplete) invariants of a persistence module.
Such invariants can serve as a surrogate for the barcode: Like barcodes, they can be used
to visualize persistence modules and also fed as input to machine learning methods and
statistical tests.

Many invariants of persistence modules have been proposed in the TDA literature, and
one can find yet more in the classical literature on commutative algebra and representation
theory. The main question for TDA is which such invariants can be useful in the development
of data analysis methodology. We are still in the early stages of understanding this.

That said, there are a few simple invariants that have received much of the attention in
the MPH literature thus far: The Hilbert function, the rank invariant, the fibered barcode,
and the multigraded Betti numbers. In what follows, we introduce these.

11.1 The Hilbert Function

Definition 11.2. The Hilbert function of a p.f.d. P -persistence module M is the function
hfM : P → N given by hf(x) = dimMx.

While this might seem like a lofty name for such a simple object, the name is standard in
commutative algebra.

Theoretically speaking, the Hilbert function has poor stability properties: For example,
we can choose M,M ′ : R → Vec so that d∞(hfM , hfM

′
)/db(BM ,BM ′) is arbitrarily large.

Nevertheless, we will see in Section B that the Hilbert function can be very useful in the
exploratory analysis and visualization of 2-parameter persistence modules. It is also potentially
useful for other purposes; for example, in preliminary work on the application of 2-parameter
persistence to virtual ligand screening (i.e., computational drug discovery), it was observed
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that the Hilbert function of a 2-parameter persistence module performs well as a signature of
molecular structure [115].

11.2 The Rank Invariant

In the paper which introduced multiparameter persistent homology, Carlsson and Zomorodian
[53] suggested the following invariant as a surrogate for the barcode:

Given a poset P , let
P≤ = {(x, y) ∈ P × P | x ≤ y}.

Definition 11.3. The rank invariant of a p.f.d. P -persistence module M [53] is the function
RankM : P≤ → N given by

RankM(x, y) = Rank(Mx,y).

Clearly, the rank invariant is a refinement of the Hilbert function.

Proposition 11.4 (Carlsson, Zomorodian ’09). The rank invariant is a complete invariant
of a p.f.d. Z-indexed or R-indexed module.

Sketch of proof. Let M be a p.f.d. persistence module Z-indexed module. For I an interval
in Z, let #I denote the number of copies of I in BM . It suffices to observe that for all such I,
RankM determines #I. For N-indexed modules, we gave explicit formulae for the barcodes
in Section 7.4 in terms of the rank invariant. These extend easily to Z-indexed modules as
follows:

For a < b ∈ Z,

#[a, b) = RankMa,b−1 − RankMa,b − RankMa−1,b−1 + RankMa−1,b,

#[a,∞) = lim
y→∞

RankMa,y − lim
y→∞

RankMa−1,y

#(−∞, b) = lim
x→−∞

RankMx,b−1 − lim
x→−∞

RankMx,b.

#(−∞,∞) = lim
x→−∞

lim
y→∞

RankMx,y.

Thus, RankM determines BM .
For the case of p.f.d. R-indexed modules, one can also give (more complicated) analogues of

these formulae which depend only on the rank invariant; these are implicit in Crawley-Boevey’s
proof of the structure theorem for R-indexed modules [78].

Remark 11.5. I imagine that the rank invariant is in fact complete for any totally ordered
set, but I have not checked this.

On the other hand, the rank invariant is incomplete for p.f.d. Z2-indexed modules:
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Example 11.6 (L., Wright, 2015). Define persistence modules M,N : N2 → Vec as follows;
M = Q(1,0) ⊕Q(0,1); while N = Q(1,1) ⊕KJ , where

J = {z ∈ N2 | z ≥ (1, 0) or z ≥ (0, 1)}.

We can express M and N in diagram form as follows:

...
...

...

k k2 k2 · · ·

k k2 k2 · · ·

0 k k · · ·

(
1

0

)
(

0

1

)

...
...

...

k k2 k2 · · ·

k k2 k2 · · ·

0 k k · · ·

(
1

0

)
(

1

0

)

By the Krull-Schmidt theorem, M and N are not isomorphic, as their decompositions into
indecomposables are different, but it is easily checked that M and N have the same rank
invariant.

While the rank invariant does not encode all of the algebraic structure of a 2-parameter
persistence module, it does captures some essential information about “what features persist”
in the homology module of a bifiltration. As such, the proposal of [53] to consider the rank
invariant has been very influential in the applied topology community.

11.3 The Fibered Barcode

[53] did not offer any concrete suggestion for how the rank invariant might be used in practice.
A simple and nice idea of Cerri et al. [58], presented a few years later, suggests a way forward.
Cerri et al. observed that the rank invariant is equivalent to what we will call the fibered
barcode. Working with the fibered barcode has two main advantages.

1. The fibered barcode is more amenable to visualization (see Section B).

2. The fibered barcode has good stability properties that would be difficult to state directly
in terms of rank invariants.

Let L we denote the set of all affine lines L ⊂ Rn which admit a parameterization of the
form L(t) = at + b, where ai ≥ 0 for all i. Equivalently, L is the set of affine lines L for
which the restriction of product partial order on Rn to L is a total order. In fact, L ∼= R as
posets whenever L ∈ L. Note that in the case n = 2, L is just the set of affine lines with
non-negative slope.
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For M : Rn → Vec p.f.d. and L ∈ L, the restriction ML of M along L is a functor
ML : L→ Vec. As L is totally ordered, the barcode BML is well defined; it is a collection of
intervals in L.

Definition 11.7. The fibered barcode of a p.f.d. Rn-persistence module M is the function
FBM with domain L given by

L 7→ BML .

The following figure illustrates BML for M = Q(4,2) ⊕Q(2,3). The line L is shown in red,
and the two intervals of BML are drawn in blue. For clarity’s sake, the intervals are slightly
offset from L.

x

y

(2,3)

(4,2)
L

Proposition 11.8 (Cerri et al. 2011). The rank invariant and fibered barcode of a p.f.d.
Rn-persistence module determine each other.

Proof. To show that FBM determines RankM , consider any a ≤ b ∈ Rn, and let L ∈ L be
a line passing through both a and b. RankMa,b is exactly the number of intervals in BML

containing both a and b.
Conversely, for any L ∈ L, RankM

L

determines BML by Proposition 11.4 and the fact
that L ∼= R as posets. But RankM determines RankM

L

, so RankM determines BML .

Stability of the Fibered Barcode The fibered barcode exhibits two stability properties,
which I call external and internal stability. Both results are given explicitly in a recent paper
by Landi [122], though they were implicit (and given explicitly in a different form) in earlier
papers by Cerri et al. [58] and Biasotti et al. [24].
L◦ ⊂ L denote the set of affine lines L admitting a parameterization L(t) = at+ b where

each ai > 0. Note that in the case n = 2, L◦ consists of all affine lines of positive, finite slope.
For L ∈ L◦, there is in fact a unique parameterization of L with each ai > 0, ∥a∥ = 1, and
∥b∥ equal to the minimum distance from the origin to L. We will assume from now on that
each L ∈ L◦ is given this parameterization. We let wL = mini ai. Via the parameterization
of L ∈ L◦, we may, for any p.f.d. Rn-persistence module M , identify BML with a barcode
consisting of intervals in R. We use this identification to state the following:
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Proposition 11.9 (External Stability). For any p.f.d. persistence modules M,N and L ∈ L◦,

(i) wL dB(BML ,BNL) ≤ dI(M,N), where dI denotes the multiparameter interleaving dis-
tance (see Section 14).

(ii) Thus, the map M 7→ BML is continuous with respect to dI and dB.

The proposition is an easy application of algebraic stability. We will explain the proof
after introducing multiparameter interleavings. Maybe I

should move
this discus-
sion of exter-
nal stability
later, after
introduc-
ing multi-
parameter
interleavings.
Otherwise, I
could intro-
duce multi-
parameter
interleavings
earlier.

Remark 11.10. In the case n = 2, the maximum value of wL is 1√
2
, which is obtained for

lines L with slope 1. As slope deviates from 1, wL monotonically decreases, approaching 0 as
L approaches either 0 or ∞. It can be shown that the constant wL is tight for each L ∈ L◦,
which implies that the barcodes BML become less stable to perturbations of M as the lines
become more horizontal or vertical. This in turn suggests that the barcodes of persistence
modules along diagonal lines may have a natural role to play in 2-parameter persistence.

Remark 11.11. For L ∈ L◦, there also a unique parameterization L(t) = at + b of L
with ai > 0, ∥a∥ = 1, and ∥b∥ the distace of the origin to L. If we instead work with this
parameterization, then we may take wL = 1 in the inequality of Proposition 11.9. This is a
slicker formulation of the proposition, but makes less clear how the stability of BML depends
quantitatively on the slope of L.

The choice of parameterization for each line L ∈ L◦ induces a parameterization of L◦ itself
by a subset of Rn × Rn = R2n; explicitly, the parameterization sends (a, b) to the line whose
parameterization is a(t) + b. Via this parameterization, the usual topology on R2n induces
a topology on L◦. Using this, we may give a qualitative statement of internal stability; we
refer to [122] for the stronger quantitative statement:

Proposition 11.12 (Internal Stability). For any finitely presented persistence module M ,
the map with domain L◦ given by L 7→ BML is continuous with respect to the topology on
barcodes induced bottleneck distance dB.

Exercise 11.13. Show that, in the 2-parameter setting both Proposition 11.9 (ii) and
Proposition 11.12 fail if the line L is horizontal; by symmetry both propositions also fail if L
is vertical.

Exercise 11.14. Show that Proposition 11.12 can fail for a p.f.d. persistence module M .
[Hint: Give a rectangle-decomposable bipersistence module M , with an infinite number of
rectangles and unbounded support, a parameterized line L(t) = at and a sequence (ai)i∈N
whose limit is a such that for Li(t) = ait, we have limi→∞ dB(MLi ,ML) ̸= 0.]
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11.4 Vectorizations of Persistence Modules

As discussed Section 4.4, many applications of 1-parameter persistent homology involve
mapping barcodes into linear spaces and then applying standard statistics and machine
learning methods. It is natural to pursue the same idea in the multiparameter setting. To
this end, several novel maps from the space of persistence modules into linear spaces have
been proposed and applied to data [17, 55, 75, 167, 168]. Most such maps proposed so far
depend only on the rank invariant, and several depend only on a part of the rank invariant.

Example 11.15. As one example, and Oliver Vipond introduced the multiparameter per-
sistent landscapes, which for an R2-indexed module M , are constructed as follows. Choose
c ∈ [0, 90], say c = 45, and k ∈ {1, 2, . . .}. For each affine line L ⊂ R2 with slope c (in degrees),
consider the kth persistent landscape (Definition 4.17) of the restriction of M to L; this is a
function L→ [0,∞). As each point in R2 lies on exactly one such line L, these landscapes
assemble into a single function from R2 to [0,∞); this is called a kth multiparameter persistent
landscape of M .

Moreover, allowing c to vary, the various kth landscapes assembled into a single landscape
function R2 × [0,∞]→ [0,∞). The collection of all such functions as k varies is equivalent
to the fibered barcode, and hence to the rank invariant.

Extending the idea of Example 11.15, any vectorization of 1-parameter persistent homology
taking the form of a function S → R can be extended to a vectorization of the fibered barcode
of the form S × L → R; this is essentially the approach of [75]. For example, this approach
yields a multiparameter version of the persistence images of [3].

For an empirical comparison of a few recent approaches to vectorization of 2-parameter
persistence modules, see [55].

Remark 11.16 (Stability). In the 1-parameter setting, vectorization methods often come
with reasonable stability guarantees. Such stability results are most often stated using the
1-Wasserstein distance; see [156, Section 6] and the references given there. An interesting
problem, which we may discuss later in this course, is how to extend such stability results to
the multiparameter setting.

11.5 Minimal Resolutions and Bigraded Betti Numbers

Another class of very natural invariants of an n-parameter persistence module is the (multi-
graded) Betti numbers. For M a finitely presented Rn-indexed module and z ∈ Rn, the
(multi-graded) Betti numbers of M at z are natural numbers

βM0 (z), βM1 (z), . . . , βMn (z).

Informally, βM0 (z) and βM1 (z) count the number of generators and relations in M at z,
respectively, while for i > 1, βMi (z) counts higher-order relations.
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There are three equivalent ways to define these formally: Via the Tor functor, via Koszul
homology, and via minimal resolutions. Arguably, the most intuitive definition, and the
one closest to computational side of MPH, is the one given using minimal resolutions. We
now introduce this. As we will explain, minimal resolutions (and their variant, minimal
presentations) are important in their own right in TDA. For in-depth reading on minimal
resolutions, Peeva’s book [136] is a good resource.

Let P be a poset.

Definition 11.17. An exact sequence of free P -persistence modules

F := · · · ∂3−→ F2
∂2−→ F1

∂1−→ F0

is called a (free) resolution of M if coker(∂1) ∼= M .

Remark 11.18 (Resolutions and presentations; existence of resolutions). Note that if F

is a resolution of a P -persistence module M , then by definition, the map F1
∂1−→ F0 is a

presentation of M . Conversely, any presentation of M can be extended to a resolution of
M , by iterating the construction used in the proof of Proposition 6.40. In particular, since
Proposition 6.40 tells us that any P -persistence module has a presentation, any P -persistence
module also has a resolution.

Recall from Section 6.4 that for a P -persistence module M , we let M◦ ⊂M denote the
submodule generated by the images of all linear maps Ma,b with a < b ∈ P .

Definition 11.19. We say

(i) a free resolution F is minimal if im ∂i ⊂ F ◦
i−1 for each i.

(ii) a presentation F is minimal if it is the last morphism of a minimal resolution.

The following result justifies the terminology minimal in the above definition.

Proposition 11.20 ([136, Theorem 7.3]). A free resolution F is minimal if and only if for
each i ≥ 0, any basis for Fi descends to a minimal set of generators for coker ∂i+1.

Proof. First suppose that F is minimal, and let B be a basis for Fi. For b ∈ B, let b̄ denote
its image in the quotient coker ∂i+1 = Fi/ im ∂i+1. To arrive at a contradiction, assume that
B descends to a non-minimal set of generators for coker ∂i+1. Then there exists b1, . . . bk ∈ B
such that

b̄1 =
k∑
j=2

cj(coker ∂i+1)gr bj ,gr b1 b̄j

for some cj ∈ K. We then have that

x = b1 −
k∑
j=2

cjFgr bj ,gr b1bj ∈ im ∂i+1.
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We claim that x ̸∈ F ◦
i : If x ∈ F ◦

i , then x can be written as a linear combination of elements
of B \ {b1}. This together with the above expression for x gives us an expression for b1 as a
linear combination of other basis elements, which contradicts the minimality of B. But since
x ̸∈ F ◦

i , we have im ∂i+1 ̸∈ F ◦
i , contradicting the minimality of F . It follows that Fi descends

to a minimal set of generators for coker ∂i+1.
To prove the converse, assume that a basis B for Fi descends to a minimal set of generators

for coker ∂i+1. To arrive at a contradiction, assume that im ∂i+1 ̸⊂ F ◦
i . Then im ∂i+1 contains

an element of the form

b1 +
k∑
j=2

cjFgr bj ,gr b1bk ∈ im ∂i+1,

where the b1, . . . , bj are distinct elements of B. Thus b1 descends to a linear combination
of other basis elements in coker ∂i+1, contradicting that B descends to a minimal set of
generators for coker ∂i+1.

Lemma 11.21. If P is finite, any P -indexed persistence module M has a minimal generating
set.

Proof. Write P = {p1, . . . , pn} in such a way that if pi < pj, then i < j. Let M j denote the
restriction of M to the poset {p1, . . . , pj} ⊂ P . By induction on j, we inductively construct
a minimal generating set for M j. For the base case j = 1, we simply choose a basis for
Mp1 ; this is a minimal generating set for Mp1 . For the induction step, assume that we have
constructed a minimal generating set B for M j, and let V ⊂Mpj+1

denote the span of the
subspaces {imMpi,pj+1

| i ≤ j}. Let B′ ⊂Mpj+1
be a set of vectors which descends to a basis

for Mpj+1
/V under the quotient map. It is readily checked that B ∪B′ is a minimal set of

generators for M j+1.

Theorem 11.22. LetM be a P -persistence module satisfying any of the following conditions:

(i) P is finite,

(ii) P = Zn and M is finitely generated,

(iii) P = Rn and M is finitely presented.

Then there exists a minimal resolution F of M .

To prepare for the proof Theorem 11.22, we introduce left Kan extensions. These are
useful in many places in the persistence theory. We only introduce them in the specific setting
of interest to us here, and do so in a very concrete way.

Definition 11.23 (Kan extensions along grid functions). Let

G = G1 ×G2 × · · · ×Gn
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where each Gi ⊂ R is discrete. Given r ∈ Rn such that r ≥ g for some g ∈ G, let

⌊r⌋ = max{g ∈ G | g ≤ r}.

For any category C define the Left Kan extension functor LanG(−) : CG → CRn
on objects by

LanG(N)r =

{
0 if ̸ ∃ g ∈ G with r ≥ g,

M⌊r⌋ otherwise,

LanG(N)r,s =

{
0 ̸ ∃ g ∈ G with r ≥ g,

M⌊r⌋,⌊s⌋ otherwise,

and on morphisms by

LanG(γ)r =

{
0 if ̸ ∃g ∈ G with r ≥ g,

γ⌊r⌋ otherwise.

Instead of introducing the Left Kan extension here, in a discussion about resolutions, perhaps place it in its own subsec-
tion, say, in Sec. 6 or when category theory is introduced. Perhaps add a discussion of adjointness and preservation of
direct sums under Kan-extension.

Proof of Theorem 11.22. For case (i), we construct the resolution inductively in the usual
way, as in Proposition 6.40 and Remark 11.18, but now taking the chosen generators to be
minimal at each step; Lemma 11.21 guarantees that such a choice is always possible. It
follows from Proposition 11.20 that the resulting resolution is indeed minimal. For the case
(ii), one can use essentially the same argument, appealing to Proposition 6.44 to ensure that
a minimal set of generators exists at each step.

For the case (iii), choose a finite presentation γ : F1 → F0 of M : Rn → Vec, bases B1

and B0 for F1 and F0 respectively, and

G = G1 ×G2 × · · · ×Gn ⊂ Rn

a finite grid containing the grades of all elements of B1 ∪B0. Let M ′ be the restriction of M
to G. Note that M ∼= LanG(M ′). M ′ is finitely generated and G is finite, so by (i), there
exists a minimal resolution F of M ′. Moreover, it is easy to check that LanG(−) is an exact
functor (i.e., it maps exact sequences to exact sequences). Hence LanG(F ) is a resolution of
M . It is similarly easy to check that since F is minimal, LanG(F ) is minimal as well.

Remark 11.24. The finite generation hypothesis of Theorem 11.22 (ii) is necessary: Consider
the Z-indexed module with a copy of the field K at each index, and identity maps everywhere.
This has no minimal generating set, hence no minimal resolution.

Remark 11.25. Kan extensions are fundamental constructions in category theory, and can
be defined in much greater generality than in the proof above. In persistence theory, they
offer a principled (universal) way of changing the indexing poset of a persistence module.
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We say a resolution F is p.f.d. if each module Fi in F is p.f.d. The key result about
minimal resolutions of multiparameter persistence modules is the following:

Theorem 11.26. Let F be a p.f.d. minimal resolution of a P -persistence module M . Any
resolution of M is isomorphic to one obtained from F by summing with resolutions of the
form

· · · 0→ 0→ T
idT−−→ T → 0→ 0→ · · · → 0

where T is a free module, and the two copies of T are allowed to appear at any two consecutive
indices.

Peeva’s book [136] proves an analogue of Theorem 11.26 for singly-graded finitely generated
k[x1, . . . , xn]-modules. The proof in Peeva’s book adapts to a proof of Theorem 11.26 with a
few minor changes.
I plan to eventually include a proof in these notes. In the meantime, here are notes on changes required to adapt Peeva’s
proof. 1)Part of Peeva’s argument shows that a summand of a free finitely generated free module (which is a projective
module) is free. This is true without the finitely generated assumption; it is a special case of Azumaya’s theorem. For
modules over local rings, the result that projectives are free is known as Kaplansky’s theorem. 2)Peeva’s argument for the
singly graded case orders a basis by increasing degree. In our case, it suffices to chose any total order that is compatible
with the poset ordering. 3)Peeva uses a determinant argument to observe that a certain endomorphism of the minimal
resolution is an isomorphism. (Eisenbud also used a determinant argument). However, a determinant argument is not
necessary; we can fix a particular index and represent the map at this index via a matrix with field coefficients. Peeva’s ar-
gument gives that this matrix is unit upper triangular, hence non-singular. Since the map it is a map between f.d. vector
spaces, it is an isomorphism.

I do not know if the theorem holds without the assumption that Fi is p.f.d., but this assumption seems necessary for the
adaptation of Peeva’s proof.

Corollary 11.27. A p.f.d. minimal resolution of a persistence module M is unique up to
isomorphism, if it exists.

Proof. Let F and G be p.f.d minimal resolutions of a persistence module M . By The-
orem 11.26, F ∼= G ⊕ A and G ∼= F ⊕ A′ for some free resolutions A and A′. Thus
F ∼= F ⊕ A⊕ A′. Theorem 10.5 then implies that F ∼= F ⊕ A′, so F ∼= G.

Azumaya’s theorem is a rather big tool for this uniqueness argument. This probably can be proven directly, even without
appealing to Theorem 11.26, by giving a uniqueness result for free covers similar to [53, Theorem 7].

Exercise 11.28. Fill in the details of the last step of the above proof, i.e., use Azumaya’s
theorem to show that F ∼= F ⊕ A′.

Exercise 11.29. Assume that F and G are two p.f.d. resolutions of the same persistence
module M . Use Theorem 11.26 to show that F and G are isomorphic via an elementary
argument, without appealing to Azumaya’s theorem.

As a consequence of the uniqueness of minimal resolutions, the following definition is well
posed.

111



Definition 11.30 (Betti Numbers). M : P → Vec be a persistence module, and let F be a
minimal free resolution of M such that no module Fi contains infinitely many copies (up to
isomorphism) of any indecomposable summand. For i ≥ 0, define the function βMi : P → N
by

βMi := hf(Fi/F
◦
i ).

For z ∈ P , we call βMi (z) the ith (multigraded) Betti number of M at grade z.

Remark 11.31. In view of Lemma 6.25, βMi (z) is the number of elements at grade z in a
basis for Fi.

Remark 11.32. The Betti numbers of multiparameter persistence modules are important
in TDA for several reasons. First, in my experience, they are very helpful for visualization
and exploratory analysis of 2-parameter persistence modules. Second, they are used by
RIVET’s computational framework for interactive visualization of fibered barcodes [126];
see Section A.1. One can also imagine that the Betti numbers could be useful statistics for
machine learning or statistical analysis of data, but I have not seen any serious application in
this direction yet.

11.5.1 Hilbert’s Syzygy Theorem

Remark 11.33. An alternative definition of the bigraded Betti numbers is given as follows:
Let K be the d-parameter persistence module with the vector space K at index 0 and the
trivial vector space everywhere else. The functor Tor is well defined for persistence modules;
we may define

βMi = hf(Tori(M,K)).

It is not too difficult to check that this coincides with the definition of βMi : Zd → R given
above.

Theorem 11.34 (Hilbert’s Syzygy Theorem). If F be a minimal resolution of a finitely
generated Zn-persistence module M , then F i = 0 for i > n.

TODO:
Would be
good to ex-
plain the
Koszul res-
olution in
detail here.

Sketch of Proof. To prove this, it is convenient to use the Tor functor definition of βMi .
Tori(A,B) is the module defined by Hi(F ⊗B), where F is any resolution of A. (The tensor
product of d-graded modules is defined by taking the usual module-theoretic tensor product;

the d-grading is given by taking the vector space at grade z to be
⊕

z1+z2=z

Az1 ⊗Bz2 .) Tori is

symmetric, i.e., Tori(A,B) = Tori(B,A) [171], which means we can in fact take a resolution
of either A or B. There exists a minimal resolution of K called the Koszul complex [136,
Section 1.14], which has length n. This implies that Tori(M,K) = 0 for i ≥ n. The result
follows.
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Thus, βMi is only of interest for i ≤ n.
The following formula relating the Hilbert function to the bigraded Betti numbers follows

from Hilbert’s Syzygy theorem by an easy inductive argument; see for example [136, Theorem
16.2] for a proof of the analogous result in the case of Z-graded K[t1, . . . , td]-modules.

Proposition 11.35. For M a finitely generated n-parameter persistence module and z ∈ Zn,

dimMz =
n∑
i=0

(−1)i
∑
y≤z

βMi (y).

Remark 11.36. RIVET uses this formula of Proposition 11.35 to compute βM2 from βM0 , βM1 ,
and hfM . Alternatively, one could use the formula to recover hfM from the Betti numbers.
The latter idea is appealing because, when viewed as function βMi : Z2 → N, the support of
the Betti numbers is usually much sparser than that of hfM . Therefore, one may prefer to
store the Betti numbers and access the Hilbert function only as needed.

Exercise 11.37. By using the structure theorem for 1-parameter persistence modules, show add internal
ref.that for M a finitely generated Z-persistence module and z ∈ Z, βM0 (z) is the number of

intervals in M with left endpoint z, and βM1 (z) is the number of intervals in M with right
endpoint z.

11.5.2 Examples

We give a few simple examples of Betti number computations on a 2×2 grid. Let P = {0, 1}2.
Throughout this section, all unspecified endomorphisms will be understood to be the identity.

Example 11.38. LetM,N : N→ Vec have barcodes BM = {[1, 4), [2, 3)}, BN = {[1, 3), [2, 4)}.
In view of Exercise 11.37, M and N have identical Betti numbers. However, the rank invariant
clearly discriminates between M and N .

Example 11.39. Let M be P -persistence module

k k

0 k

The following is a minimal free resolution of M :

· · · → 0→ 0→ Q(1,1)

(
1
1

)
−−→ Q(1,0) ⊕Q0,1

Therefore
βM0 (1, 0) = βM0 (0, 1) = βM1 (1, 1) = 1,

and βMi (z) = 0 otherwise.
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Example 11.40. Let M be P -persistence module

0 0

k 0

The following is a minimal free resolution of M :

· · · → 0→ 0→ Q(1,1)

(
1
1

)
−−→ Q(1,0) ⊕Q0,1 (1 1)−−−→ Q0,0

Therefore
βM0 (0, 0) = βM1 (1, 0) = βM1 (0, 1) = βM2 (1, 1) = 1,

and βMi (z) = 0 otherwise.

Example 11.41. For the modules M and N of Example 11.6, we have

βM0 (1, 0) = βM0 (0, 1) = 1,

and βMi (z) = 0 otherwise, while

βN0 (1, 0) = βN0 (0, 1) = βN0 (1, 1) = βN1 (1, 1) = 1,

and βNi (z) = 0 otherwise. Thus the bigraded Betti numbers discriminate between M and N ,
whereas we observed in Example 11.6 that the rank invariant does not discriminate between
them. Together with Example 11.38, this shows that the Betti numbers and rank invariants
do not determine each other.

Exercise 11.42. Give a minimal resolution of each of the modules in Exercise 10.10. Also
give the Betti numbers of each module.

Exercise 11.43. Give an example of a pair of non-isomorphic bipersistence modules with
the same rank invariant and same bigraded Betti numbers.

12 Multiparameter Filtrations from Data

There are many natural constructions of a multiparameter filtration from data. Thus far, we
have mentioned just a couple of examples, the multicover bifiltration (Definition 1.1) and the
degree-Rips bifiltration (Definition 10.3). Here and in the next section, we consider several
other constructions. Besides the bifiltrations we discuss in this section, in Section 16.2 we
will introduce the measure bifiltration, which generalizes the multicover bifiltration, and in
Section 13, we study the Rhomboid bifiltration, which is weakly equivalent to the muticover
bifiltration.
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12.1 Function-Rips Bifiltrations

Let X be a finite metric space, and γ : X → R be any function. We define the function-Rips
bifiltration (also called the superlevel-Rips bifiltration) Rips(γ) : Rop × [0,∞)→ Simp by

Rips(γ)a,r = γ−1[a,∞).

We can also define the sublevel-Rips bifiltration of a function γ : X → R analogously, but we
will not work with such bifiltrations in these notes.

Example 12.1 (Density-Rips bifiltration). Fixing a parameter r > 0, define γr : X → R by

γr(x) = |{y ∈ X | d(x, y) ≤ r}|.

That is, γr(x) is the number of points in P within distance r of x. The function γr is an
example of a density function, i.e., a function whose value is high in dense regions of the
data and low near sparse regions of the data. There are also other ways of defining a density
estimator, e.g., kernel methods and k-nearest neighbor methods. These have been widely
studied in statistics. All choices depend on some choice of a bandwidth parameter (r in our
case.)

When γ is a density function, we call the bifiltration Rips(γ) a density-Rips bifiltration.
These turn out to be very useful in the study of noisy point cloud data. One main disadvantage
of working with the density-Rips bifiltration is its dependence on the choice of bandwidth
parameter; in contrast, the degree-Rips bifiltration (Definition 10.3) does not depend on
a parameter choice. On the other hand, density-Rips bifiltrations are easier to handle
computationally, which is a significant advantage.

Density-Rips bifiltrations have been used in recent applications of 2-parameter persistent
homology to cancer imaging and single-cell genomic data [19, 167], in conjunction with
multiparameter persistence landscapes [167]. These applications were carried out using
RIVET’s backend (see Section A.1).

Remark 12.2. One can equivalently define the degree-Rips bifiltration in a way similar to the
way we have defined the density-Rips bifiltration Rips(γr): Rather than taking the parameter
r to be fixed, we take r to be equal to twice the scale parameter of the Vietoris-Rips complex.
This clarifies the relationship between the degree-Rips and density-Rips bifiltrations.

Example 12.3 (Eccentricty-Rips bifiltration). Define γ : X → R by

γ(x) =
1

|X|
∑
y∈X

d(x, y).

Thus, γ(x) is the average distance of x to all other points in X. We call γ an eccentricity
function, and we call Rips(γ) an eccentricty-Rips bifiltration. When X has the structure of
multiple tendrils emanating radially from a central core, as in the figure below (left), the
superlevel sets of γ form clusters in corresponding to the tendrils of X (right), and Rips(γ)
sees these tendrils as “persistent clusters.”
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Example 12.4 (Functions Provided by an Application). Sometimes an interesting function
γ : X → R comes to us from an application. For example, in the study of collective motion
of animals (e.g., flocking of birds, swarming of fish), one commonly considers time-varying
point cloud data in R3 [23, 135, 163]. If time is sampled discretely, then we can think of such
data as a single point cloud X equipped with a time function γ : X → R. Time-varying point
cloud data also arises in the study of the shape of time-series data, via the use of the sliding
window methods. In both settings, applications of 1-parameter persistence are well studied
[2, 23, 164, 174], [119, 137, 138, 165], but the applications of multiparameter methods remain
unexplored.

As another example, in computational chemistry applications, one can take X to be the
atom centers of a biomolecule, e.g., a protein or a ligand (.e., drug candidate) and γ to be the
partial charge function [48, 49]. The resulting function-Rips bifiltrations have been applied
to the virtual screening (computational drug discovery) problem in [115].

12.2 The Interlevel Bifiltration

Working in the 2-parameter persistence setting allows us to define, for any function topological
space W and function γ : W → R, a very natural bifiltration S(γ) : Rop × R → Top. We
call this the interlevel bifiltration. We define

S(γ)x,y =

{
γ−1[x, y] if x ≤ y,

0 otherwise.

Under mild conditions (e.g., if γ is bounded), S(γ) encodes the superlevel and sublevel
filtrations of γ. Interestingly, thanks to a Mayer-Vietoris argument, under mild conditions
the persistence modules HiS(γ) turn out to be interval decomposable, with each barcode
consisting of highly structured intervals called blocks. These encode the superlevel and
sublevel barcodes of γ. This was first explored by Carlsson, de Silva, and Morozov [50], and
then further developed by Bendich et al. [18]. That work depends on some strong conditions
on the function γ. Recently, those conditions were relaxed considerably [34, 71].

The interlevel bifiltration is closely related to sheaf-theoretic formulations of persistence,
as developed, e.g., in Justin Curry’s thesis [79].
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12.3 Subdivision Bifiltrations

Barycentric Subdivision Recall that, for any simplicial complex T , the set of chains of
simplices in T

σ0 ⊂ σ0 ⊂ · · · ⊂ σk

forms a simplical complex T+, called the barycentric subdivision of T . |T+| is naturally
identified with a subdivision of |T |, as illustrated below for the case where T is a 2-simplex:

T T+

Note that vertices of T+ are in bijective correspondence with simplices of T .

Subdivision Filtrations For k ∈ (0,∞), let S(T )k be the subcomplex of T+ spanned
by vertices of T+ corresponding to simplices of dimension at least k − 1. Let S(T )0 be the
complete simplex on the vertices of T+. This defines a filtration S(T ) : [0,∞)op → Simp,
with S(T )k = T + for k ∈ (0, 1], as illustrated below:

S(T )3 S(T )2 S(T )1

For F : P → Simp any simplicial filtration, applying the above construction to F
indexwise yields a filtration S̃(F ) : [0,∞)op × P → Simp. In the case that F = Čech(P ) for
some ambient metric space Z and X ⊂ Z, this yields a bifiltration

S̃ Čech(P ) : [0,∞)op × [0,∞)→ Simp,

the (unnormalized) subdivision-Čech bifiltration. Similarly, in the case that F = Rips(X) for
a metric space X, this yields a bifiltration

S̃ Rips : [0,∞)op × [0,∞)→ Simp,

the (unnormalized) subdivision-Rips bifiltration. Both bifiltrations were introduced by Sheehy
[151].

The following result is useful for studying the stability of the subdivision bifiltrations, in
addition to being intrinsically interesting.
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Theorem 12.5 (Multicover Nerve Theorem [30, 56, 151]). Let Z be a contractible metric
space Z such that all intersections of finitely many balls in Z are contractable, and let X ⊂ Z
be finite. S̃ Čech(X) is weakly equivalent to the multicover bifiltration M̃(X).

Remark 12.6 (Remarks on Multicover Nerve Theorem). The definitions of the multicover
and subdivision-Rips bifiltrations both admit “open” variants, where the ≤ signs in the
definitions are replaced with strict inequalities. For the open variants, Sheehy [151] proved
the specialization of Theorem 12.5 to the 1-parameter filtrations obtained by fixing the first
persistence parameter k. This proof does not directly extend to the 2-parameter setting.
Sheehy and Cavanna [56, Appendix B] later observed that the standard proof of the nerve
theorem for open covers (see Theorem 5.10) extends with surprising ease to a proof of the
“open” version of the multicover nerve theorem. However, there is one non-trivial step in this
extension, which is omitted in [56]. This step is handled carefully in [30], which reproves the
“open” version of the multicover nerve theorem. By appealing to [14, Proposition 5.37], also
explains how that the adapts to the “closed” version of the multicover bifiltration stated
above.

The Subdivision-Rips and Subdivision-Čech Bifiltrations are attractive constructions of a
density-sensitive bifiltrations on point cloud data: They don’t depend on a parameter, the
definitions are elegant, and these constructions turn out to be theoretically well behaved.
However, the constructions are prohibitively large for practical use, because the barycentric
subdivisions of Čech or Rips complexes have exponentially many vertices. That said, one may
ask whether there exist smaller (say, polynomially sized) bifiltrations which are (approximately
or exactly) weakly equivalent to the subdivision-Rips and subdivision-Čech bifiltrations. In
the Čech case, the rhomboid bifiltration is such a construction, at least for generic point sets
in a Euclidean space of fixed dimension. We discuss this in Section 13.

12.4 Sublevel Filtrations of Poset-Valued Functions

Earlier, we have defined the sublevel filtration of a function valued in a totally ordered set
(Definition 5.48). This extends immediately to functions valued in any poset:

Definition 12.7. For W a topological space and γ : T → P any function, define a bifiltration
S↑(γ) : P → Top by

S↑(γ)r = {x ∈ W | γ(x) ≤ r}.
Maybe it’d
be better to
introduce
the def. for
posets from
the begin-
ning.

Example 12.8. Let γ : S1 → R2 be the inclusion map. S↑(γ)(0,0) is the intersection of S1

with the closed lower left quadrant, while S↑(γ)(1,1) is the intersection of S1 with the closed
lower half plane.

Definition 12.9. We say a filtration F : P → Top is 1-critical if it is isomorphic to a sublevel
filtration. Otherwise we say F is multicritical.
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Remark 12.10. Note that if F : P → Top is a 1-critical filtration, then for each x ∈ colim(F ),
there is a unique minimal r ∈ P such that x ∈ Fr. (colimF is the union of all the spaces
of the filtration, topologized in the appropriate way. This is is a standard construction in
elementary category theory.). it is proba-

bly a good
idea to add
something
about colim-
its earlier in
the notes.

Exercise 12.11. Let ∗ denote a a singleton set, regarded as a topological space. For each of
the following filtrations F , say whether F is 1-critical or multicritical. Explain your answer.

(i) F : {0, 1}2 → Top given by

∅ ∗

∅ ∗

(ii) F : {0, 1}2 → Top given by
∗ ∗

∅ ∗

(iii) F : R→ Top given by

Fr =

{
∗ if r ≥ 0,

∅ if r < 0.

(iv) F : R→ Top given by

Fr =

{
∗ if r > 0,

∅ if r ≤ 0.

Many of the bifiltrations we have considered thus far are 1-critical. For example, the
function-Rips, Subdivision-Rips, interlevel, are all 1-critical. The rhomboid bifiltration
introduced in the next section is also 1-critical. On the other hand, the degree-Rips and
multicover filtrations are multicritical. As we will discuss later, computing the homology
of a multiparameter filtration is simplest and most scalable when the filtration is 1-critical,
because then all of the associated chain modules are free.

The above makes clear that not every filtration of interest is isomorphic to a sublevel
filtration. However, we may ask whether every filtration is weakly equivalent to a sublevel
filtration. Proposition 12.12 asserts that this true for multiparameter filtrations, provided we
work with the right category of topological spaces and the right notion of weak equivalence.
Specifically, we work with the category Top ⊂ Top′ of compactly generated weakly Hausdorff
spaces [157]. (Homotopy theorists often prefer to work with Top′ because it contains most
topological spaces one encounters in practice, and has better theoretical properties than
Top.)
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Proposition 12.12 ([29]). Let P be a directed poset, i.e., a poset such that for all x, y ∈ P
there exists z ∈ P with x ≤ z and y ≤ z. Then any functor F : P → Top′ is weakly equivalent
(in the sense of Remark 5.19, using objectwise weak homotopy equivalences) to a sublevel
filtration.

it would be
nice to have
some exam-
ples showing
the neces-
sity of the
technical hy-
potheses in
this state-
ment.

13 The Rhomboid Bifiltration

This section is devoted to one very interesting bifiltration construction; since it will take
some effort to explain, I have given it is own section.

Throughout this section we assume X ⊂ Rn to be finite and in (both spherical and affine)
general position. Edelsbrunner and Osang [92] introduced a density-sensitive polyhedral
bifiltration

R(X) : [0,∞)op × [0,∞)→ Top

in Rn+1 called the rhomboid bifiltration. This extends the Delaunay filtration Del(X) (Defini-
tion 5.40), in two senses: First, R(X)(1,−) is weakly equivalent to Del(X), and second, the
filtered face poset of Del(X) is a suboject of the bifiltered face poset of R(X). the latter

point is not
explained in
the text yet;
add this.

The central theorem about the rhomboid bifiltration is the following:

Theorem 13.1 ([76]). R(X) is weakly equivalent to the multicover bifiltration M̃(X).

As we will explain below, R(X) has Θ(|X|n+1) cells. Thus, for data in a Euclidean space
of fixed dimension, R(X) gives us a polynomially-sized model of the multicover filtration.

The following figure, taken from [76], illustrates R(X) in the case that X consists of five
points in R:

In this section, our main aims will be to define the rhomboid bifiltration and to sketch
a proof of Theorem 13.1. Our definition of the rhomboid bifiltration is different from, but
equivalent to, the usual one [76, 92]; whereas the earlier work defines R(X) as a bifiltered
polyhedral cell complex in Rn+1, we will define it as a bifiltered regular cell complex, without
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considering any Euclidean embedding. Our proof of weak equivalence is also different than
the one appearing in [76].

Our approach emphasizes the essential poset-theoretic nature of the construction, and
appeals to general ideas about the face posets of regular CW-complexes that are of independent
interest. That said, the polyhedral viewpoint is also interesting; we discuss it in Section 13.5.

13.1 The Bifiltered Poset of combinatorial cells

We have defined Delaunay filtrations in terms of nerves of the intersection of Voronoi cells
with balls. Though the rhomboid tiling extends this, the definition appears very different, and
in particular, does not explicitly depend on the nerve construction. To bridge the gap and
provide some context and intuition for the definitions which follow, we give a (very classical)
characterization of the Delaunay filtration, which is not difficult to prove.

Exercise 13.2.

(i) Show that given X ⊂ Rn in general position, a simplex σ ⊂ X belongs to the Delaunay
triangulation D(X) if and only if there exists a closed ball B in Rn such that X ∩B = σ
and B◦ ∩X = ∅.

(ii) Show that σ appears in the Delaunay filtration Del(X) at the infimal radius of such a
ball B.

In the fu-
ture, this ex-
ercise should
be moved
where Delau-
nay triangu-
lations are
introduced.

With this as inspiration, we now being working towards the definition of the rhomboid
bifiltration:

Definition 13.3. A pair ρ = (ρin, ρon) of disjoint subsets of X is a combinatorial cell of X if
∃ a closed ball B ⊂ Rn such that

ρin = X ∩B◦ and ρon = X ∩ ∂B.

We say that B is a witness of ρ.

Example 13.4. Let X = {w, x, y, z} ⊂ R2, and let B be the closed ball whose boundary is
shown below.

B
y

zx
w

The associated combinatorial cell ρ is ({x}, {y, z}).

The set of all combinatorial cells of X forms a poset P (X), with the order given as follows:
ρ′ ≤ ρ if and only if both of the following conditions hold:

1. ρ′on ⊂ ρon and
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2. ρin ⊂ ρ′in ⊂ ρin ∪ ρon.

Exercise 13.5. Check that this is indeed a partial order.

Remark 13.6. A more intuitive geometric description of the partial order on P (X) is as
follows: ρ′ ≤ ρ if and only if for any witness B of ρ, one can obtain a witness of ρ′ by
perturbing the center and radius of B an arbitrarily small amount; see the illustration below.

Example 13.7. For X as in the previous example, we have

{{x, z}, {y}} := ρ′ ≤ ρ := {{x}, {y, z}},

as illustrated by the figure below:

B′

B
y

zx
w

P (X) is naturally bifiltered, as follows: Given a combinatorial cell ρ, we let

• kρ = |ρin|
• rρ be the infimal radius of a witness of ρ.

Define a bifiltration F (X) : Nop
+ × [0,∞) by

F (X)k,r = {ρ ∈ P (X) | k ≤ kρ, r ≥ rρ}.

Note that for r sufficiently large, F (X)0,r = P (X).

Exercise 13.8. For X and ρ as in Example 13.4, list all of the combinatorial cells ρ′ ∈ P (X)
such that ρ′ ≤ ρ.

Exercise 13.9. For X = {0, 1, 3} ⊂ R, give an explicit description of P (X). Also give the
birth index (kρ, rρ) of each ρ ∈ P (X).

13.2 Nerves of Posets

It turns out that F (X) encodes the multicover bifiltration up to weak equivalence. To explain
this, one needs a way of constructing a topological space from a poset. There is a standard
functorial construction for this, the nerve of a poset. (This is different from, but closely
related to, the nerve of a cover, which we have seen in Definition 5.2.) To elaborate, recall
from Examples 3.14 that Pst denotes the category whose objects are posets and whose
morphisms are order-preserving functions.
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Definition 13.10. We define a functor N (−) : Pst → Simp on an objects P by taking
k-simplices in N (P ) to be the set of finite chains

{p0 < p1 < · · · < pk}

of elements in P . N (P ) is called the nerve of P , or alternatively the order complex of P .

Applying the nerve construction to the bifiltered poset F (X) yields a simplicial bifiltration
NF (X). As we will see below, NF (X) is barycentric subdivision of the rhomboid bifiltration,
and hence also weakly equivalent to the rhomboid bifiltration. However, taking barycentric
subdivision increases size considerably, so in the computational setting, we would prefer to
work with the rhomboid bifiltration directly.

13.3 Regular CW-Complexes

To define the rhomboid bifiltration, we will need to first discuss some of the theory of regular
CW-complexes and their face posets.

Definition 13.11. A CW-complex C is called

(i) regular if the attaching map of each cell is an embedding (i.e., a homeomorphism onto
its image).

(ii) normal if the boundary of each cell of C is a subcomplex of C.

Proposition 13.12 ([129, Theorem 2.1]). A regular CW-complex is normal.

Remark 13.13. The converse of Proposition 13.12 is false: Consider the usual cellular model
of the projective plane RP2. The 1-skeleton is S1, and the attaching map of the 2-cell wraps
twice around S1, so this map has image a union of cells, but is not an embedding.

Examples 13.14.

(i) Any geometric simplicial complex is a regular cell complex.

(ii) The CW model of S1 with two 0-cells and 1-cells is a regular CW-complex.

(iii) The CW module of S1 with one 0-cell and 1-cell is not a regular CW-complex.

Regular Not regular
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Remark 13.15. The usual face relation on simplices in a simplicial complex also extends
to the cells of a regular CW-complex T . Thus, the barycentric subdivision T+ of T is
well-defined, and as in the simplicial case, T+ is homeomorphic to T .

We denote the face poset of a regular CW-complex T as Fa(T ).

Proposition 13.16. For regular CW-complexes T , T ′ an isomorphism f : Fa(T )→ Fa(T ′)
induces a homeomorphism f̄ : T → T ′ which restricts to a bijection from σ → f(σ) for each
σ ∈ T .

Sketch of Proof. We can define f̄ , along with its inverse, by induction on the dimension of
cells, regarding each cell as a cone on its boundary.

The following result is standard.

Proposition 13.17.

(i) For T a regular CW-complex, then N (Fa(T )) and T+ are isomorphic as simplicial
complexes.

(ii) Therefore, N (Fa(T )) and T are homeomorphic.

Given a poset P and x ∈ P , let ↓ x = {y ∈ P | y < x}.

Definition 13.18 ([28]).

(i) A CW-poset is a poset P such that for all x ∈ P , N (↓ x) is homeomorphic to a sphere
(where the empty set is interpreted as the sphere S−1).

(ii) For P a CW-poset and x ∈ P , we define the dimension of x as

dim(x) := dim(N (↓ x)) + 1.

Proposition 13.19 ([28]). A poset P is a CW-poset if and only if it is isomorphic to the
face poset of a regular CW-complex.

Proof of Proposition 13.19. By functoriality, isomorphic posets have homeomorphic nerves,
so for the “only if” part of the statement, it suffices to consider the case where P is the face
poset of regular CW-complex T . Let σ be a cell of T . Then by Proposition 13.12, ∂σ is a
subcomplex of T and homeomorphic to a sphere. By Proposition 13.17, we have

N (↓ σ) = N (Fa(∂σ)) ∼= (∂σ)+. (7)

Since barycentric subdivision preserves homeomorphism, it follows that N (↓ (σ)) is homeo-
morphic to a sphere.

Conversely, suppose that P is a poset such that for all x ∈ P , N (↓ x) is homeomorphic
to a sphere. Call P k := {x ∈ P | dim(x) ≤ k} the k-skeleton of P . Note that if x < y ∈ P ,
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then N (↓ x) is a strict subcomplex of N (↓ y), which implies that dim(x) < dim(y), i.e., the
dimension function on P respects the partial order; otherwise, we would have an embedding
f : Sm → Sn where m > n. (One can prove that such an embedding cannot exist by applying
the invariance of domain theorem.)

We will construct a regular CW-complex H(P ) and a dimension-preserving isomorphism
γ : Fa(H(P )) ∼= P , by induction on the skeleta of P . For the base case, we take 0-skeleton
to be the set of all dimension-0 points of P . Now assume that H(P k) and a dimension-
preserving isomorphism γk : Fa(H(P k)) ∼= P k have been constructed. For each x ∈ P with
dim(x) = k + 1, we have that ↓ x ⊂ P k, since the dimension function on P respects the
partial order. Note that γ(↓ x) is a subcomplex of H(P k). In fact, since N (↓ x) is a sphere by
assumption, Proposition 13.17 implies that γ(↓ x) is homeomorphic to a k-sphere. We attach
a (k + 1)-cell to H(P k) which corresponds to x by taking the cone on this k-sphere. Doing
so for all cells x with dim(x) = k + 1, we obtain a regular cell complex H(P k+1) extending
H(P k+1) and an isomorphism γk+1 : P k+1 → Fa(H(P )k+1) extending γk. Finally, we define
H(P ) =

⋃
kH(P k), where (as is standard for CW complexes) the union is given the final

topology. The isomorphisms (γk)k∈N induce an isomorphism γ : Fa(H(P )) ∼= P .

Proposition 13.20. If P is a CW-poset, then any isomorphism between P and the face
poset of a regular CW-complex preserves dimension.

Proof. The proof of Proposition 13.19 constructed a particular dimension preserving isomor-
phism γ, so the result follows from Proposition 13.16.

Definition 13.21. Given posets P ⊂ Q, we say P is a downset of Q if for all y ∈ P and
y ≥ x ∈ Q, we have x ∈ P .

Proposition 13.22. If Q is a CW-poset and P is a downset of Q, then P is also a CW-poset.

Proof. This is immediate from the definitions:

Remark 13.23. We have a simple functoriality property for the construction H(−) given in
proof of Proposition 13.19: If P is a downset of a CW-poset Q, then we have a canonical
inclusion H(P ) ↪→ H(Q).

13.4 The Rhomboid Bifiltration and its Properties

As earlier, let X ⊂ Rn be finite and in general position.

Exercise 13.24.

(i) Show that for any combinatorial cell ρ ∈ P (X),

{ρ′ ∈ P (X) | ρ′ ≤ ρ}

is isomorphic to the face poset of the hypercube [0, 1]|ρon| with its usual product cell
structure. (Here we interpret [0, 1]0 to be a single point.)
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(ii) Use (i) to show that the downset has set size 3|ρon|.

Exercise 13.25. For any (k, r) ≤ (k′, r′) ∈ Nop × [0,∞), show that F (X)(k,r) is a downset
of P (X).

Proposition 13.26.

(i) For any (k, r) ∈ Nop × [0,∞), F (X)k,r is a CW-poset.

(ii) For any ρ ∈ F (X)k,r, we have dim ρ = |ρon|.

Proof. Exercise 13.25 tells us that F (X)(k,r) is a downset of P (X). Therefore, by Proposi-
tion 13.22, to prove (i) it suffices to check that P (X) is CW-poset. For any combinatorial
cell ρ ∈ P (X), Exercise 13.24 (i) implies that ↓ ρ is isomorphic to the face poset of the
boundary of the hypercube [0, 1]|ρon|. As this boundary is homeomorphic to S|ρon|, we have
that N (↓ ρ) ∼= S|ρon|. This establishes both (i) and (ii).

Definition 13.27.

(i) The rhomboid bifiltration of X is the bifiltration R(X) : Nop×[0,∞) given by R(X)k,r =
H(F(X)k,r); Exercise 13.25 and Remark 13.23 ensure that the required inclusions maps
are well defined.

(ii) H(P (X)) is called the rhomboid tiling of X. We abuse notation slightly and also denote
this as R(X).

The following result is used frequently computational geometry:

Exercise 13.28. For any n+ 1 points X ⊂ Rn in general position, there exists exactly one
sphere in Rn containing X.

A regular CW-complex is said to be pure if every maximal cell has the same dimension.

Proposition 13.29 (Basic Properties of the Rhomboid Tiling). If X has at least n + 1
points, then R(X)

(i) is pure and of dimension n+ 1.

(ii) has exactly
( |X|
n+1

)
top dimensional simplices.

(iii) has Θ(|X|n+1) cells (assuming that n is fixed).

Proof. By Proposition 13.26 (ii), each combinatorial cell ρ ∈ P (X) has dimension |ρon|. By
the general position assumption, |ρon| ≤ n+ 1. Moreover, if X has at least n+ 1 points, then
Exercise 13.28 says that for any S ⊂ X with |S| = n+ 1, there exists a unique closed ball
B with S = X ∩ ∂B, hence a unique combinatorial cell ρ with ρon = S. Both (i) and (ii)
now follow from Proposition 13.20. In view of (i) and (ii), to prove (iii) it suffices to show
that, assuming n fixed, each (n + 1)-cell of R(X) has a constant number of faces. This is
established by Exercise 13.24 (ii).

126



Remark 13.30. Even if X ⊂ Rn+1 is not in general position, the poset P (X), its bifiltration
F (X), and the nerve N (F (X)) are still well-defined, but P (X) is no longer a CW-poset.
Without the general position assumption, N (F (X)) may have dimension much higher than
n+ 1 and grow exponentially in size with n; indeed, the Delaunay filtration (which we defined
as a nerve) already exhibits such behavior (Exercise 5.39).

13.5 The Polyhedral Viewpoint

Definition 13.31. A (geometric) rhomboid is a subset of a Euclidean space which is the
image, under a non-singular affine transformation, of a hypercube [0, 1]n for some n ≥ 0.
(Here, we interpret [0, 1)0 as a single point.)

The approach to defining the rhomboid bifiltration taken in [92] amounts to giving a
polyhedral embedding of the rhomboid tiling R(X) into Rn+1, where each cell is embedded
as a rhomboid: Given a combinatorial cell ρ, we let Geo(ρ) ⊂ Rn+1 denote the convex hull
of the set {(

∑
x∈S x, |S|) ∈ Rn+1 | ρin ⊂ S ⊂ ρin ∩ ρon}. In [92] the rhomboid tiling of X is

defined to be the set
{Geo(ρ) | ρ is a combinatorial cell of X.}

It is then a theorem that this actually defines a polyhedral cell complex; see [92, Theorem
2.1] and the text immediately below. It is easy to check that for any combinatorial cell ρ and
face σ of Geo(ρ), there is some combinatorial cell ρ′ such that σ = Geo(ρ′), so the theorem
is at least plausible. But one has to check that cells intersect only in common faces. The
argument in [92] uses the theory of zonotopes and a construction which lifts the points of X
onto a paraboloid in Rn+1. We will not discuss this here.

Remark 13.32. Part of my motivation for introducing the poset viewpoint on the rhomboid
tiling is to avoid having to argue that the polyhedral construction actually yields a cell
complex. That said, the polyhedral viewpoint has played an important role in existing
work about the rhomboid tiling. The polyhedral embeddings also give us a general way of
visualizing examples of the rhomboid bilftration, and such visualizations are important to
our understanding.

13.6 Computing the Rhomboid Bifiltration

The problem of how to compute R(X) has been studied in [93], in connection with the
problem of computing higher-order Delaunay Mosaics. Osang has implemented this algorithm
for points in R2 and R3 and used this implementation to conduct a large suite of experiments,
which are reported in [93]; see Section A.9. We can formalize the computational problem
as follows: Given X ⊂ Rn in general position, compute the Hasse diagram of the face poset
of the rhomboid tiling, along with the index of appearance of each cell. Given this, the
boundary matrices of the associated chain complex are readily constructed using ideas in [86,
Section 3].
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Explicit runtime bounds for the algorithm of [93] are not given in that paper, but it
is observed in [76] that the runtime for n = 3 is O(n5). To the best of my knowledge, no
reasonable runtime bound is known for this algorithm for larger n. The approach of [93] is
highly non-obvious and relies heavily on weighted Delaunay triangulation computation, a
well developed technology in computational geometry.

The problem of efficiently computing R(X) is very interesting. However, it must be
emphasized that the size of R(X), while polynomial, is prohibitively large for realistic
data sets. For example, the rhomboid tiling of 2000 points in R4 has roughly 466 trillion
top-dimensional cells, which is huge. Two complementary potential ways forward are:

• Compute R(X) only up to some fixed values of k or r; importantly, the algorithm of
[93] is naturally suited to such computation, and some experiments reported in that
paper do exactly this.

• Compute some smaller object that approximates R(X). The problem of how to do so is
mostly open. One simple, natural idea is to work with a δ-sample of |X| rather than |X|
itself. Such a subsampling strategy also makes equal sense several other filtration types
and is explained in some detail in Section 16.6 for the case of degree-Rips bifiltrations.
However, because of size considerations, subsampling alone is probably insufficient to
enable practical approximate computation of R(X), and new ideas are needed.

13.7 Weak equivalence of Rhomboid and Multicover Bifiltrations

Here, we sketch a proof of the weak equivalence of the Rhomboid tiling and multicover
bifiltration. This proof is different than the earlier proof of [76], which relies heavily on the once a few

more details
are filled
in, remove
“sketch of”

polyhedral viewpoint. This proof has not yet appeared elsewhere.
Let X ⊂ Rn be in general position. The main idea of the proof is to realize P (X) as the

opposite of the face poset of a cell decomposition of Rn+1, namely an arrangement of cones;
R(X) can be interpreted as the dual of this arrangement. Here is a rough schematic of the
proof:

≃ multicover bifiltration

≃ bifiltered cone arrangement

≃ nerve of cover by maximal cells

≃ nerve of face poset of rhomboid bifiltration
∼= rhomboid bifiltration

Define a function f : Rn × R → P (X) by taking f(x, r) to be the rhomboid witnessed
by the ball B(x, r); here, for r < 0, we define B(x, r) = ∅. The level sets of f give a
decomposition D of Rn+1; we will refer to these level sets as cells, and their closures as closed
cells. We let c(ρ) = f−1(ρ), and denote its closure as c̄(ρ).

For x ∈ X, let
Cx = {(y, r) ∈ Rn × [0,∞) | ∥y − x∥ ≤ r}.
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The decomposition D can be interpreted geometrically as the arrangement of the cones
{Cx | x ∈ X}, i.e., each cell of D except the one corresponding to the empty rhomboid is
an intersection of such cones and their boundaries, and the cell corresponding to the empty
rhomboid is Rn+1 \ ∪x∈XCx. Note that in this decomposition, the vertex of a cone is not
regarded as a cell. Each c̄(ρ) is a semi-algebaic set, i.e., a finite union of sets defined by
polynomial equalities and inequalities. Figs. 13.1 and 13.2 illustrate of the cone arrangement
of three points in 2-D and 1-D, respectively.

Figure 13.1: The cone arrangement of three points in R2.

0

1

2

0 1 3

(0, ∅) (1, ∅) (3, ∅)

(01, ∅) (13, ∅)

(013, ∅)

(∅, ∅)

(1, 03)

(∅, 13)

(∅, 01)

(∅, 0) (1, 0) (∅, 3)

Figure 13.2: The cone arrangement of X = {0, 1, 3} ⊂ R. All 2-cells and 0-cells are labeled
by their corresponding combinatorial cells, in black and green, respectively. In addition, selected
1-dimensional cells are labeled by their corresponding rhomboids, in blue.

The proofs of the following two propositions are straightforward.

Proposition 13.33 (Duality). c̄(ρ) ⊂ c̄(ρ′) if and only if ρ′ ≤ ρ in P (X).

We say c̄(ρ) is maximal if c̄(ρ) is maximal among among the closed cells with respect to
containment. This is equivalent to the minimality of ρ in P (X), i.e., ρon = ∅.
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Proposition 13.34. The closed cells c̄(ρ) are exactly the intersections of maximal closed
cells.

0 1 3

(0, ∅)
(1, ∅)

(3, ∅)

(01, ∅)
(13, ∅)

(013, ∅)

(∅, ∅)

Figure 13.3: The cone arrangement of Fig. 13.2, together with an embedding of the rhomboid
tiling R(X) into Rn+1. The embedding is not canonical. R(X)(2,2) is shown in orange.

We next define a sublevel filtration on Rn × R = Rn+1 weakly equivalent to M(X): Let
γ : Rn × R→ [0,∞)op × [0,∞) be given by γ(x, r) = (k, r), where k is the cardinality of the
set {y ∈ X | ∥x− y∥ ≤ r}, i.e. k = |ρin ∪ ρon| for ρ = f(x, r). Note that the first coordinate
of γ is constant on cells of D. A simple deformation retraction argument shows that the
projection p : Rn+1 → Rn onto the first n coordinates induces an objectwise homotopy
equivalence S↑(γ)→M(X). See Fig. 13.4 for an illustration of a sublevel set of γ.

0

1

2

0 1 3

M(X)(2,2) × {2}

S(γ)(2,2)

Figure 13.4: S↑(γ)(2,2), for X ⊂ R as in Fig. 13.2, is shown in light blue. The coordinate projection

p : Rn+1 → Rn maps S↑(γ)(2,2) surjectively onto [−1, 3] = M(X)2,2, essentially by collapsing

S↑(γ)(2,2) onto its top edge. This map is a homotopy equivalence.
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For ρ ∈ P (X) minimal and (k, r) ∈ [0,∞)op × [0,∞), let

c̄(ρ)(k,r) =

{
c̄(ρ) ∩ S↑(γ)(k,r) if |ρin| ≥ k,

∅ otherwise.

Each c̄(ρ)(k,r) is semi-algebraic, as it is the intersection of the semi-algebraic set c̄(ρ) and a
half-plane.

Let
U(k,r) := {c̄(ρ)(k,r) | ρ ∈ P (X)is minimal }.

Recalling Definition 5.21, we note that U(k,r) is a cover of S↑(γ)(k,r), and that as (k, r) varies,
these covers assemble into a cover U of S↑(γ).

Proposition 13.35. Each intersection of elements of U(k,r) either empty or contractible.

Sketch of Proof. It is clear that c̄((∅, ∅))(k,r) is either empty or contractible. Let S ̸=
c̄((∅, ∅))(k,r) be non-empty intersection of elements of U(k,r). We observe that S is star-
convex: S has a unique point x with smallest last co-ordinate, and for any y ∈ S, S contains
the closed line segment from x to y. Thus S deformation retracts onto x via a straight-line
homotopy.

Given Proposition 13.35, a version of the persistent nerve theorem for semi-algebraic sets
[14] implies that the nerve N (U) is weakly equivalent to S↑(γ); see Fig. 13.5. . Let Ū denote this version

of the per-
sistent nerve
theorem as-
sumes com-
pact covers
at each in-
dex. The
cover ele-
ment cor-
responding
to (ρ, ρ) is
not compact,
but this is a
very minor
technicality.

the cover of Rn+1 by maximal cells c̄(ρ).

0

1

2

0 1 3

Figure 13.5: U(2,2) (red, blue, yellow) and N (U)(2,2) (purple).

To complete the proof that R(X) and M(X) are weakly equivalent, we show that
N (U) ≃ N (F (X)). This is sufficient to finish the argument because N (F (X)) ∼= R(X)+

(see Proposition 13.17), so if N (U) ≃ N (F (X)), then on the level of spaces we have

M(X) ≃ S↑(γ) ≃ N (U) ≃ N(F (X)) ∼= R(X).
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0 1 3

Figure 13.6: The 1-skeleton of N (Ū). The full simplicial complex is the clique complex of this
1-skeleton, and thus consists of three tetrahedra, with each pair of tetrahedra intersecting along a
unique edge, and with all three tetrahedra intersecting at a vertex. Proposition 13.36 provides a
homotopy equivalence from the barycentric subdivision of N (Ū) to the barycentric subdivision of
the rhomboid tiling R(X).

To show that N (U) ≃ N (F (X)), we begin with a general observation about (filtered)
nerves, which guides the argument.

For V be any cover of a topological space, let Y V = Fa(N (V )). That is, Y V is the poset
consisting of finite subsets of V whose common intersection is non-empty, with the partial
order given by inclusion. By Proposition 13.17, we have that N (V )+ ∼= N (Y V ). Let ZV

denote the poset of non-empty intersections of elements of V , ordered by reverse inclusion,
and let fV : Y V → ZV denote the poset map sending a subset of V to its intersection.

Proposition 13.36. The induced map on nerves N (fV ) : N (Y V )→ N (ZV ) is a homotopy
equivalence.

The proof of Proposition 13.36 is an easy application of the following standard result:

Theorem 13.37 (Quillen’s theorem A for posets [139]). If g : P → Q is a poset map such
that for all q ∈ Q, {p | g(p) ≤ q} has a contractible nerve, then g induces a homotopy
equivalence on nerves.

Proof of Proposition 13.36. The map fV satisfies the condition of Quillen’s theorem A,
because for each z ∈ ZV , there is a minimum element y ∈ Y V such that fV (y) ≤ z,
namely, y =

⋃
{w ∈ Y V | ∩w = z}. It is a standard fact that a poset with a minimum (or

maximum) element has a contractible nerve.10

10One convenient way prove this is with discrete Morse theory. Define a discrete gradient vector field F
whose only critical simplex is the 0-simplex corresponding to the minimum p, by matching each simplex
not containing p to its cofacet containing p. By a basic result of discrete Morse theory, F determines a
deformation retraction of the nerve onto p.
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In the case the case that V = Ū , Proposition 13.36 implies that N (Y Ū) ≃ N (ZŪ). By
Proposition 13.34, N (ZŪ) is exactly the poset {c̄(ρ) | ρ ∈ P (X)}, where the partial order is
reverse inclusion. By Proposition 13.33, we then have that on the level of topological spaces

N (Ū) ∼= N (Y Ū) ≃ N (ZŪ) ∼= N (P (X)),

where the last relation follows from Proposition 13.33.
To show that N (U) ≃ N (F (X)), we wish to extend the homotopy equivalence between

N (Ū) and N (P (X)) to a bifiltered version. To limit the notational burden, we state the
extension only in present setting. Let Y U , ZU : P → Pst be the bifiltered posets given
respectively by

Y U
(k,r) = {S ⊂ Y Ū | ∩A∈SA(k,r) ̸= ∅}

(where our notation identifies A ∈ Ū with is corresponding element in U), and ZU
(k,r) = f(Y U

(k,r)).

Let fU : Y U → ZU be the natural transformation induced by f .
The proof of the following is more or less the same as the proof of Proposition 13.36,

again using Quillen’s theorem A; we omit the adaptation.

Proposition 13.38. The induced map N (fU) : N (Y U)→ N (ZU) is a weak equivalence.

One might hope to finish the argument by showing that ZU and F (X) are isomorphic, but
this is not the case. For example, taking X = {0, 1, 3} as in the examples above, N (ZU

(2,2)) is

a 2-D simplicial complex, while N (F (X))(2,2) is a 1-D simplicial complex; see Fig. 13.7.
Nevertheless, ZU and F (X) are related, in the sense that F (X) includes into ZU : Consider

the bijection of posets c̄ : P (X) → ZŪ given by ρ 7→ c̄(ρ). Define a bifiltered poset G by Perhaps in-
troduce ear-
lier the idea
that c̄ is a
map.

G(k,r) = c̄−1(ZU
(k,r)). Since c̄ is a bijection, we have that G ∼= ZU ,

Todo: fill in the missing proofs below.

Proposition 13.39. F (X)(k,r) ⊂ G(k,r) for all (k, r) ∈ [0,∞)op × [0,∞).

Finally, we establish the following via Quillen’s theorem A for simplicial complexes
completing the proof that N (U) ≃ N (F (X)). explain the

simple re-
lationship
between the
versions of
Quillen’s
theorem A
for posets
and simpli-
cial com-
plexes

Proposition 13.40. The inclusion F (X) ↪→ G induces an objectwise weak equivalence
N (F (X)) ↪→ G.
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Figure 13.7: Illustration of N (F (X))(2,2) (orange) and N (ZU(2,2)), for X = {0, 1, 3} ⊂ R. Vertices
correspond to cells of the cone arrangement; we have embedded each vertex in the interior of its
corresponding cell.

14 The Multiparameter Interleaving Distance

The multiparameter interleaving distance is the most widely considered distance on multipa-
rameter filtrations and persistence modules, and our main tool for formulating stability and
approximation results in the multiparameter setting. This section focuses on the definition
and basic theory of the multiparameter interleaving distance. Applications will be developed
in later sections.

14.1 Multiparameter Interleavings

The definitions of interleavings and the interleaving distance we studied in Section 9.5.1
generalize immediately to the multiparameter setting, as follows:

Given category C and v ∈ [0,∞)n, define (−)δ : CRn → CRn
as follows: For F : Rn → C,

F v : Rn → C is given by F v
r = Fr+v and F v

r,s = Fr+v,s+v. For a natural transformation
γ : F → G, γv : F v → Gv is given by F = γvr = γr+v. Note that the internal maps
{Fr,r+v}r∈Rn assemble into a morphism φF,δ : F → F v.

For δ ∈ [0,∞), let δ⃗ = (δ, δ, . . . , δ) ∈ Rn.

Definition 14.1. A δ-interleaving between functors F,G : Rn → C is a pair of morphisms

γ : F → Gδ⃗ κ : G→ F δ⃗

such that
κδ⃗ ◦ γ = φF,2δ⃗ γ δ⃗ ◦ κ = φG,2δ⃗.

We define the interleaving distance dI by

dI(F,G) = inf {δ | there exists a δ-interleaving between F and G}.
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Exercise 14.2.

(i) Show that if F,G : Rn → C are ϵ-interleaved and G,H are δ-interleaved, then F,H are
(ϵ+ δ)-interleaved.

(ii) Use (i) to show that dI is an extended pseudometric (Definition 9.1 (i)) on Rn-persistence
modules.

This section is too redundant with 9.4.1 perhaps they ought to eventually be merged.

Proposition 14.3 ([125]). dI descends to an extended metric (Definition 9.1 (ii)) on iso-
morphism classes of finitely presented Rn-indexed modules.

Consider
stating the
natural gen-
eralization of
this proposi-
tion to left
Kan exten-
sions along
finite grids.

Exercise 14.4. Show that for a, b ∈ Rn, and Qa, Qb defined as in Section 6.2, we have
dI(Q

a, Qb) = ∥a− b∥∞.

Exercise 14.5. Show that for any functor H : C → D and functors F,G : Rn → C, a
δ-interleaving between F and G induces a δ-interleaving between HF and HG. Thus,
dI(HF,HG) ≤ dI(F,G).

14.2 Universality of the Multiparameter Interleaving Distance

In this section and those that follow, the word distance will be used to mean “extended
pseudometric” (Definition 9.1). A main result from my Ph.D. thesis [125] shows that when
the field K is prime (i.e., K = Z/pZ or K = Q), dI is the most discriminative distance on
multiparameter persistence modules satisfying a reasonable stability property. Here, we give
the precise statement of the result and offer a few remarks.

First, we briefly explain the motivation: There have been many, many proposals for
distance on multiparameter persistence modules in the TDA literature. In order to develop
TDA theory in the multiparameter setting, we would like to select once and for all a principled
choice of distance. The universality result for dI tells us that in a certain relative sense, dI
distance is the optimal choice.

To formulate the result, we first need to extend the definition of the sup-norm distance
given in Section 9.3 to Rn-valued functions.

Definition 14.6. For T a topological space and γ, κ : T → Rn any functions, we define the
sup-norm distance between γ and κ by

d∞(γ, κ) := sup
x∈T
∥γ(x)− κ(x)∥∞.

Definition 14.7. A distance d (i.e., extended pseudometric) on multi-parameter persistence
modules is stable if for all topological spaces W , functions γ, κ : W → Rn and i ≥ 0, we have

d(H iS↑(γ), H iS↑(κ)) ≤ d∞(γ, κ).
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Theorem 14.8 ([125]).

(i) The interleaving distance dI on multiparameter persistence modules is stable.

(ii) Assume that the field K is prime. Then for any other stable distance d on multi-
parameter persistence modules, we have d(M,N) ≤ dI(M,N) for all persistence modules
M and N .

Remarks 14.9.

(i) The generalization of Theorem 15.6 to arbitrary fields is an open question.

(ii) A version of Theorem 15.6 was previously known for the special case of 1-parameter
persistence and 0th homology [80].

The proof of Theorem 15.6 (i) is essentially trial: One checks directly that for δ =
supx∈W ∥γ(x)− κ(x)∥∞, S↑(γ) and S↑(κ) are δ-interleaved via inclusion maps. Exercise 14.5
then yields the result. The proof of Theorem 15.6 (ii), which is more involved, boils down to
the following lifting result:

Proposition 14.10. If persistence modules M and N are δ-interleaved, then there exists a
topological space W and functions γM , γN : W → Rn such that

1. d∞(γM , γN) = δ,

2. H1S↑(γM) ∼= M ,

3. H1S↑(γN) ∼= N .

To prove Proposition 14.10, the key step is to show that M and N are δ-interleaved if
and only if there are presentations for M and N that are compatible, in the sense that they
differ from one another only by shifting the grades of generators and relations by at most δ⃗.
This characterization of the interleaving relation also underlies the proof of algebraic stability
outlined in Section 9.7, and was given a second, more conceptual proof in [27].

Exercise 14.11. Use Proposition 14.10 to prove Theorem 15.6 (ii).

14.3 Stability of Coarsening

To control the cost of computations in the multiparameter setting, it is common practice
to coarsen ones filtrations or persistence modules, i.e. to snap the indices where the objects
change onto a grid. For example, coarsening is used by both RIVET and Persistable; see
Section A. Here, we formally define such coarsening, use interleavings to formulate a simple
stability result for coarsening.

Recall, our definition of a Left Kan extension along a grid (Definition 11.23).
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Definition 14.12. Consider a category C and functor F : Rn → C. For a discrete grid

G = G1 ×G2 × · · · ×Gn ⊂ Rn

with inclusion j : G→ Rn, We call FG := LanG(F ◦ j) the G-coarsening of F .

The Fig. 14.1 illustrates the effect of coarsening on an interval persistence module:

Figure 14.1: An interval in I ⊂ R2 (shaded region), and a 3x3 grid in R2 (black dots). (KI)G is
also an interval module; the corresponding interval is shown in blue.

Exercise 14.13. Show that given a presentation matrix for an Rn-persistence module M ,
and any discrete grid G, we obtain a presentation matrix for MG by

1. replacing each row/column label with its least upper bound in G, if such an upper
bound exists,

2. removing each row and column whose label has now upper bound in G.

Here is one way to formulate the stability of coarsening, which while not fully general,
captures well how coarsening is most often used in computational practice:

Proposition 14.14. Suppose we are given a functor F : Rn → C, a grid G′ ⊂ Rn, and
functor F ′ : G′ → C with F ∼= LanG′(F ′). Let G ⊂ Rn be another grid such that for all
g′ ∈ G′, there exists g ∈ G with g ≤ g′ and ∥g− g′∥∞ ≤ δ. Then F and FG are δ-interleaved.

In fact one
gets a (δ, 0)-
interleaving,
which is
stronger.
Perhaps clar-
ify this.

Exercise 14.15. Prove Proposition 14.14.

illustrate
this with
some exam-
ples.
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15 The Homotopy Interleaving Distance

15.1 Homotopy Interleavings

We have defined interleavings between functors from Rn → C for any category C. In particular,
we may take C = Top. While interleavings between Top-valued functors are often useful,
they are not homotopy invariant, and therefore are sometimes too rigid for the purposes of
TDA. This rigidity is illustrated by the following exercise:

Exercise 15.1. This exercise assumes familiarity with colimits.

(i) Show that that if functors F,G : Rn → Top are δ-interleaved, then colimF and colimG
are isomorphic.

(ii) Using (i), show that for any finite metric spaces X and Y with |X| ̸= |Y |, we have
dI(Rips(X),Rips(Y )) =∞.

To obtain a homotopy-interleaving distance, we use a modified version of the interleaving
distance which explicitly builds in homotopy invariance. From now on, we use the definition of
weak equivalence of functors Rn → Top generated by objectwise weak homotopy equivalences
(see Remark 5.19).

Definition 15.2 ([29]). We say functors are F,G : Rn → Top are δ-homotopy interleaved
if there exist F ′ ≃ F and G′ ≃ G with F and G δ-interleaved.

The homotopy interleaving distance on functors Rn → Top is given by

dHI(F,G) = inf {δ | there exists a δ-homotopy interleaving between F and G}.

In what follows, it will be convenient to introduce the following notation for (homotopy)

interleavings: If F and G are δ-interleaved, we write F G,δ and if F and G are

δ-homotopy interleaved, we write F G.δh It’d be bet-
ter introduce
this notation
earlier, in
the previous
section, or
even before.

Theorem 15.3 ([29]). dHI is an extended pseudometric.

Sketch of Proof. All the properties of an extended pseudometric are trivial, besides the
triangle inequality. We sketch a proof of the triangle inequality following [121], which
simplifies the original argument of [29] by using a homotopy right Kan extension (essentially,
pullbacks) rather a homotopy left Kan extension (pushouts). It suffices to show that given

F,G,H : Rn → Top with F Gϵh and F G,δh we have F H.(ϵ+δ)h Recall

from Remark 5.18 that F ≃ F ′ if and only if there exists a diagram of objectwise weak

equivalences F ← W → F ′. Thus, if F Gϵh and F G,δh then we have a diagram

of the form
W

F ′ G′ G′′ H ′
ϵ δ
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where F ′ ≃ F , G′ ≃ G ≃ G′′, H ′ ≃ H, and the diagonal arrows are objectwise weak
equivalences. To complete the proof, it suffices to show that this diagram extends to a
diagram of the form

F ′′ W H ′′

F ′ G′ G′′ H ′

ϵ δ

ϵ δ

where the outer diagonal arrows are objectwise weak equivalences. Then, by the triangle

inequality for interleavings, we have F ′′ H ′′,ϵ+δ F ′′ ≃ F , and H ′′ ≃ H, which implies

F H.(ϵ+δ)h The desired diagram extension can be constructed by a universal construction
called a homotopy right Kan extension. One has to check that the construction indeed yields
objectwise homotopy equivalences for the diagonal arrows. This requires care, but follows
from standard facts about homotopy pullbacks and categorical limits.

We next consider the basic properties of dHI .

Exercise 15.4. Using Remark 5.18, show that if F Gδh , then HiF HiGδ for

all i ≥ 0. Thus dHI(F,G) ≥ dI(HiF,HiG).

The homotopy interleaving distance has a universal property closely analogous to that of
the interleaving distance on multiparameter persistence modules. This is useful because, the
homotopy interleaving distance, is one of several reasonable-looking candidates for a homotopy-
invariant version of the interleaving distance. As for the case of modules, universality offers
us a principled choice of distance among the several options. We will discuss one of these
alternative distances, the homotopy commutative interleaving distance, below. First, we give
the statement of universality and briefly discuss its proof.

Definition 15.5. A distance d on functors Rn → Top is

(i) stable if for all topological spaces W and functions γ, κ : W → Rn, we have

d(S↑(γ),S↑(κ)) ≤ d∞(γ, κ).

(ii) homotopy invariant if d(F,G) = 0 whenever F ≃ G.

Theorem 15.6 ([125]).

(i) dHI is stable and homotopy invariant.

(ii) For any other stable distance d on functors Rn → Top, we have d ≤ dHI .

Stability of dHI is proven in the same (nearly trivial) way as for the interleaving distance on
persistence modules, using the fact that dHI ≤ dI . Homotopy invariance of dHI is immediate
from the definition. As with the interleaving distance on persistence modules, the proof of
universality boils down to a lifting result:
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Proposition 15.7. If F G,δ then there exists a topological space W and functions

γF , γG : W → Rn such that

1. d∞(γF , γG) ≤ δ,

2. S↑(γF ) ≃ F ,

3. S↑(γG) ≃ G.

Sketch of Proof. The proof is rather different than the proof of the analogous lifting result
for persistence modules, Proposition 14.10. One treats the cases δ > 0 and δ = 0 separately.
We consider only the case δ > 0, as the case δ = 0 is similar, but simpler. Let P δ be the
poset whose underlying set is Rn × {0, 1}, with the partial order defined by (r, i) ≤ (s, j) if
and only if either

1. r + δ⃗ ≤ s or

2. i = j and r ≤ s.

Let Ei : Rn ↪→ Rn × {i} denote the inclusion. While we have defined a δ-interleaving as a
pair of natural transformations, one can equivalently define a δ-interleaving between F and
G to be a functor Z : P δ → Top such that Z ◦ E0 = F and Z ◦ E1 = G. move this

to where
interleavings
are defined,
since it is of
more general
interest.

According to Proposition 12.12, there exists a topological space W and function γ : W →
P δ such that Z ≃ S↑(γ). Let us write γ(x) = (rx, ix). One can check that S↑(γ) ◦ E0 and
S↑(γ) ◦ E1 are the sublevel filtrations of the functions γF , γG : W → Rn, given respectively

by γF (x) = rx + ixδ⃗, and γG(x) = rx + (1− ix)δ⃗. We thus have

S↑(γF ) = S↑(γ) ◦ E0 ≃ Z ◦ E0 = F, S↑(γG) = S↑(γ) ◦ E1 ≃ Z ◦ E1 = G.

Moreover, it is clear that d∞(γF , γG) ≤ δ.

Applications It turns out that in many cases, stability, interference, and approximation
theorems in TDA which are stated in terms of the bottleneck distance on barcodes admit a
filtration-level strengthening using the homotopy interleaving distance. This is discussed at
length in [29]. In later sections of the notes, we will consider applications to 2-parameter
persistence. Here we mention just one representative application in the 1-parameter setting:
Using homotopy interleavings, the Rips stability theorem (Theorem 9.10) can be strengthened
as follows:

Theorem 15.8 ([29]). For any finite metric spaces P,Q, we have

dHI(Rips(P ),Rips(Q)) ≤ dGH(P,Q).

Theorem 9.10 follows immediately from Theorem 15.8, together with Exercise 15.4 and
the algebraic stability theorem:

dB(BHi Rips(P ),BHi Rips(Q)) ≤ dI(Hi Rips(P ), Hi Rips(Q)) ≤ dHI(Rips(P ),Rips(Q)) ≤ dGH(P,Q).
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15.2 The Homotopy Commutative Interleaving Distance

There is another apparently natural candidate for a homotopy-invariant version of an inter-
leaving distance on functors Rn → Top, the homotopy commutative interleaving distance
dHC . The definition of this is so simple and clean that it might at first glance seem like more
a natural choice of distance than dHI . However, as its name suggests dHC is defined in terms
of homotopy commutative diagrams of spaces, and as already discussed in Remark 5.20, it is
a basic tenant of homotopy theory that working with homotopy commutative diagrams of
spaces is problematic. In this respect, the definition of dHC is a bit unsavory. But how does
this unsavoriness manifest itself in the properties of the metric? In fact, dHC satisfies all the
properties of dHI mentioned above except universality [29, 121].

In what follows, we define dHC and explain the relationship between dHC and dHI . While I
don’t believe that dHC is itself a very important mathematical object for TDA, the comparison
between dHC and dHI sheds light on dHI and highlights how universality can inform the
development of the TDA theory.

Recall the definitions of the homotopy category of topological spaces ho(Top) and the
homotopy functor π : Top → ho(Top) from Remark 5.20. A functor F : C → ho(Top) is
called a homotopy commutative diagram.

Definition 15.9. A δ-homotopy commutative interleaving between F,G : Rn → Top is a
δ-interleaving between πF, πG.

We define the homotopy-commutative (h.c.) interleaving distance between F and G to be

dHC(F,G) := inf {δ | ∃ a δ-homotopy commutative interleaving between F and G}.

Exercise 15.10. Show that dHC ≤ dHI .

The following trio of results, due to Lanari and Scoccola [121], clarifies the relationship
between dHI and dHC :

Theorem 15.11 ([121]).

(i) dHC < dHI (this settles a conjecture in [29]).

(ii) On 1-parameter filtrations, dHI ≤ 2 dHC.

(iii) On n-parameter filtrations with n ≥ 2, there exists no constant c such that dHI ≤ c dHC .

Definition 15.12. Given a functor F : C → ho(Top), a rectification of F is functor G : C →
Top such that F ∼= πG.

Remarks 15.13. The following three remarks are used, respectively, to prove the three
substatements of Theorem 15.11:
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(i) A well-known example of a non-rectifiable homotopy commutative diagram is the
following:

∗ ∗

S4 S4 S3 S3,
f g h

where f and h are (the homotopy classes of) any degree-2 maps (i.e., the induced maps
f∗ : H4(S

4)→ H4(S
4) and h∗ : H3(S

3)→ H4(S
3) are multiplication by 2), and g is the

suspension of the Hopf fibration. See [121] and the references therein for a discussion
of this example.

(ii) Any functor F : Z→ ho(Top) is rectifiable, and any two such rectifications are weakly
equivalent.

(iii) When C is the poset {0, 1}2, multiple rectifications which are not weakly equivalent can
exist; an example is given in [113].

Sketch of Proof of Theorem 15.11 (i) and (ii). To prove (i), we extend the unrectifiable dia-
gram of Remarks 15.13 (i) to a homotopy commutative 1-interleaving, as follows:

∗ ∗ ∗ ∗

S4 S4 S3 S3,
f g h

Call the top and bottom rungs X and Y . But a homotopy 1-interleaving between X and
Y would give a rectification of the unrectifiable diagram. This implies that dHC < dHI on
N-indexed diagrams of spaces. The result for Rn-indexed diagrams follows readily from this. this is an-

other place
where an ap-
peal to Kan
extensions
would be
helpful

To give the idea of the proof of (ii), we consider the analogous problem in the setting
of Z-indexed modules. Assume for concreteness that we are give a homotopy-commutative
1-interleaving between F,G : Z → Top. Take the zigzag-ing subdiagram of a homotopy
commutative interleaving shown in red; call this X.

· · · F−2 F−1 F0 F1 F2 · · ·

· · · G−2 G−1 G0 G1 G2 · · ·

X can be regarded as a functor X : Z→ Top, where Xz = Gz for z even and Xz = Fz for
z odd. By Remarks 15.13 (ii), X can be rectified to a strictly commutative diagram X ′.
Consider poset maps o, e : Z→ Z which map each integer y to the largest odd (respectively,
respectively) integer z such that z ≤ y. Note that X ′◦o and X ′◦e are 1-interleaved. Moreover,
Remarks 15.13 (ii) implies that X ′ ◦ o ≃ F ◦ o and X ′ ◦ e ≃ G ◦ e. Finally, we note that F ◦ o
and F are 1-interleaved, as are G◦e and G. The triangle inequality for homotopy interleavings
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now gives that F and G are 3-homotopy interleaved. In fact, a slightly more careful version of
the last part of the argument, using asymmetric interleavings, gives a 2-interleaving between add internal

reference?F and G. While we have considered a 1-homotopy commutative interleaving here, the same
argument in fact applies to an m-homotopy commutative interleaving, for any m ∈ N, and
can moreover be extended to R-indexed modules via a discrete approximation.

Exercise 15.14. Use Remarks 15.13 (iii) to prove Theorem 15.11 (iii).

16 Stability of 2-Parameter Persistent Homology

In this section, we give stability results for density-sensitive bifiltrations built from point
cloud and metric data. This requires us to consider distances between data sets and also
distances for between their topological invariants. For the former, we regard data sets as
probability measures on a metric space, and use standard distances between such measures;
for the latter, we use (homotopy) interleavings.

16.1 Probability Measures

We begin by reviewing some of basic definitions of measure theory and probability theory.

Definition 16.1. A σ-algebra on a set Ω is a set F of subsets of Ω such that

1. Ω ∈ F ,
2. if S ∈ F , then Ω \ S ∈ F ,
3. if S1, S2 . . . ∈ F , then

⋃∞
i=1 Si ∈ F .

Elements of F are called measurable sets.

Definition 16.2. For W a topological space, the Borel σ-algebra of W is the smallest
σ-algebra containing all open sets of W .

Unless otherwise specified, all σ-algebras we consider will be understood to be Borel. As
any metric space has an associated topology, it has an associated Borel σ-algebra. We will
work primarily with the Borel σ-algebra of metric spaces.

Example 16.3. If W is a discrete topological space, then by definition all sets are open, so
the Borel σ-algebra of W is the power set of W .

Definition 16.4.

(i) A measure space is a triple (Ω,F , µ), where Ω is a set, F , is a σ-algebra, and µ : F →
[0,∞) is a function such that whenever S1, S2, . . . ⊂ F are pairwise disjoint, we have

∞∑
i=1

µ(Si) = µ

(
∞⋃
i=1

Si

)
.

µ is called a measure (on F).
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(ii) If in addition we have µ(Ω) = 1, then we call µ a probability measure, and the tripe
(Ω,F , µ) a probability space.

Definition 16.5. A metric probability space is a triple (Z, ∂Z , µ), where (Z, ∂Z) is a metric
space and µ is a probability measure on this metric space.

Definition 16.6 (Pushforward Measures).

(i) Given σ-algebras (Ω,F) and (Ω,F ′), γ : Ω→ Ω′ is said to be a measurable if γ−1(S) ∈ F
for all S ∈ F ′.

(ii) If µ : F → [0, 1] is a measure, and γ : Ω→ Ω′ is measurable, we define the pushforward
measure γ∗(µ) : F ′ → [0, 1] by γ∗(µ)(S) = µ(γ−1(S)).

Definition 16.7.

(i) For X a finite metric space, define µX , the uniform (probability) measure on X, by
µX(A) = |A|/|X|.

(ii) For Z a metric space, X ⊂ Z finite, and j : X ↪→ Z the inclusion, the normalized
counting measure ofX is the pushforward ηX := j∗(µX). Explicitly, ηX(A) = |A∩X|/|X|
for all measurable sets A ⊂ Z. Similarly, the unnormalized counting measure η̃X is
given by η̃X(X) = |A ∩X|.

16.2 Measure and Multicover Bifiltrations

The measure bifiltration [30, 62] is generalization of the multicover bifiltration (Definition 1.1)
to probability measures on a metric space.

Definition 16.8. Let (Z, ∂Z) be a metric space, and µ be a probability measure on Z. We
define a bifiltration M(µ) : [0,∞)op × [0,∞)→ Top by

M(µ)(k.r) = {y ∈ Ω | µ(B(y, r)) ≥ k},

where, as elsewhere in these notes, B(y, r) denotes the closed ball of radius r centered at y.

Example 16.9. Let X = S1 ⊂ R2 with the geodesic distance, and let µ be the uniform
probability measure on S1. Then

M(µ)(k,r) =

{
S1 if r ≥ πk,

∅ otherwise.

Thus, neither H0(M(µ)) nor H1(M(µ)) are finitely presented.

Definition 16.10. Let X be a finite, non-empty subset of a metric space Z.
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(i) We let M(X) :=M(ηX), and call this the multicover bifiltration.

(ii) We let M̃(X) :=M(η̃X), and call this the unnormalized multicover bifiltration.

Note the following explicit formulae for the normalized and unnormalized multicover
bifiltrations:

M(η̃X)(k,r) = {y ∈ Z | |X ∩B(y, r)| ≥ k},
M(ηX)(k,r) = {y ∈ Z | |X ∩B(y, r)| ≥ k|X|}.

Thus Definition 16.10 (ii) generalizes Definition 1.1 from Rn to arbitrary ambient metric
spaces Z.

As we have already seen, multicover bifiltrations are by now somewhat well studied in
TDA. In contrast, the structure of other measure bifiltrations is yet not well understood.

16.3 Metrics on Probability Measures

There are many ways to define a distance between metric probability spaces [103]. We
will focus here on the Prohorov (also known as Prokhorov) and Wasserstein distances, and
their extensions to measures defined on different metric spaces, the Gromov-Prohorov and
Gromov-Wasserstein distances. This section is adapted from [30, Section 2].

Given a metric space (Z, ∂z), A ⊂ Z, and δ ≥ 0, we let

Aδ = {y ∈ Z | ∂Z(y, A) ≤ δ}.

Definition 16.11. Given probability measures µ, η on a common metric space, their Prohorov
distance is

dPr(µ, η) := inf {δ ≥ 0 | µ(A) ≤ η(Aδ) + δ and η(A) ≤ µ(Aδ) + δ for all A ⊂ Z}.

The Prohorov distance is a measure-theoretic analogue of the Hausdorff distance, and
plays an analogous role in the stability theory for MPH.

Exercise 16.12. Show that over any fixed metric space (Z, ∂Z), dPr is a metric.

Definition 16.13. For probability measures µ, η on a common σ-algebra, their total variation
distance is

dTV (µ, η) = sup
A measurable

|µ(A)− η(A)|

Exercise 16.14. Check that dPr ≤ dTV ≤ 1.

Exercise 16.15. Show that for a, b ∈ Rn, dPr(η{a}, η{b}) = min(∥a− b∥, 1).

To obtain version of the Prohorov distance between probability measures on different
spaces, we follow the same approach used to define the Gromov-Hausdorff distance from the
Hausdroff distance (Definition 9.9):

145



Definition 16.16 ([106, 166]). The Gromov-Prohorov distance between measures µ and η
on metric spaces X and Y is given by

dGPr(µ, η) = inf
φ,ψ

dPr(φ∗µ, ψ∗η),

where φ : X → Z and ψ : Y → Z range over all isometric embeddings into a common metric
space Z.

Definition 16.17. A metric space is

(i) complete if every Cauchy sequence converges,
(ii) separable if it has a countable, dense subset,

(iii) Polish if it is complete and separable.

When developing probability theory on metric spaces, it is standard to restrict attention
to Polish spaces in order to avoid pathologies.

Proposition 16.18 ([106]). dGPr is a pseudometric on Polish probability spaces. Moreover,
there is a reasonable notion of isomorphism of between Polish probability spaces such that
dGPr descends to a metric on isomorphism classes; see [30, Section 2.4].

Importantly, dPr and dGPr are robust to outliers, in the following sense:

Exercise 16.19. Show that

(i) if X ⊂ Rn is finite and Y ⊂ X is nonempty, then

dPr(ηX , ηY ) ≤ |X \ Y |
|Y |

.

(ii) if X is a finite metric space and Y ⊂ X is nonempty, then

dGPr(µX , µY ) ≤ |X \ Y |
|Y |

.

[HINT: Use Exercise 16.14.]

Definition 16.20. A coupling of probability spaces µ and η on respective metric spaces X
and Y is a measure Γ on X × Y such that Γ(A× Y ) = ηX(A) and Γ(X ×B) = ηY (B) for all
measurable sets A ⊂ X and B ⊂ Y .

Intuitively, one thinks of a coupling of µ and η as a plan for transporting probability mass
from an initial configuration µ to a final configuration η.

For the following definition, we assume familiarity with the measure-theoretic definition
of an integral.
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Definition 16.21. For p ∈ [1,∞), the p-Wasserstein distance between probability measures
µ and η on the same Polish space (Z, ∂Z) is

dpW (µ, η) = inf
Γ

(∫
Z×Z

∂Z(y, z)p dΓ

) 1
p

,

where Γ ranges over all couplings of µ and η.

Definition 16.22. A measure µ on a Polish space (Z, ∂Z) has finite pth moment if for some
(hence all) x ∈ Z, we have ∫

Z
∂Z(z, x)p dµ <∞.

Proposition 16.23 ([166, Section 6]). For any p ∈ [1,∞), the p-Wassertstein distance is an
extended metric on the set of all measures on a fixed Polish space. It restricts to a metric on
measures with finite pth moment.

Exercise 16.24. Show that for any p ∈ [1,∞) and a, b ∈ Rn, dpWW (η{a}, η{b}) = ∥a− b∥.

Remark 16.25. One can define the p-Gromov-Wasserstein distance dpGW in terms of dpW
in the same way that we defined dGPr in terms of dPr, i.e., via isometric embeddings into a
common metric space [130, 159]. This is a pseudometric on the class of Polish probability
spaces with finite pth moment, and dpGW (µ, η) = 0 if and only if µ and η are isomorphic. Thus,
dpGW descends to a metric on isomorphism classes of Polish metric probability spaces with
finite pth moment.[30, 159].

Proposition 16.26.

(i) For any probability measures µ and η on a common Polish space,

dPr(µ, η) ≤ min
(
dpW (µ, η)

1
2 , dpW (µ, η)

p
p+1

)
.

(ii) For any Polish probability spaces µ and η,

dGPr(µ, η) ≤ min
(
dpGW (µ, η)

1
2 , dpGW (µ, η)

p
p+1

)
.

Note that (ii) follows immediately from (i). The bound (i) is equivalent two two separate
bounds, one involving the exponent 1/2 and one involving the exponent p/(p+1). The former
is standard, e.g., see [103]. I learned the latter bound from H̊avard Bjerkevik, who proved it
himself. Given how classical these metrics are, I would imagine that this bound was known
previously, but we could not find a reference.
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16.4 Stability and Robustness

We now give close 2-parameter analogues of the standard stability results for offset, Čech
and Rips persistent homology given in Section 9.4. Unlike their 1-parameter counter parts,
our 2-parameter results yield robustness guarantees, via Exercise 16.19.

In what follows, we consider interleavings of functors [0,∞)op × [0,∞) → Top. While
we have not explicitly defined these, the definition of interleavings we have given for R2-
indexed functors extends in the obvious way, i.e., informally speaking we have arrows
(k, r)→ (k − δ, r + δ) for all k ≥ δ.

We begin by giving a simple stability result for measure bifiltration:

Theorem 16.27 ([30]). For any probability measures µ, η on a common metric space, we
have

dI(M(µ),M(η)) ≤ dPr(µ, η).

Exercise 16.28. Prove Theorem 16.27. (It is quite straightforward.)

We can define normalized versions of the subdivision and degree bifiltrations in essen-
tially the same way we have defined a normalized version of the multicover bifiltration.
Extending the notation we have already introduced for multicover bifiltrations, our con-
vention is that unnormalized and normalized versions of bifiltration are denoted with and
without a tilde, respectively. For example, for X a finite, nonempty subset of a metric
space Z the normalized subdivision-Cech filtration S Čech(X) : [0,∞)op × [0,∞) is given by
S Čech(X)(k,r) = S̃ Čech(X)k|X|,r.

Corollary 16.29.

(i) For any metric space Z and X,Y ⊂ Z finite and non-empty, we have

dI(M(X),M(Y )) ≤ dPr(ηX , ηY ).

(ii) If Z is contractable and all finite intersections of balls are also contractible, then we
also have

dHI(S Čech(X),S(Y )) ≤ dPr(ηX , ηY ).
The way I’ve
introduced
stability for
subdivision-
v Cech is
not quite
analogous
to how it
was done for
Cech in Sec
9. There, a
remark was
used, and
alpha com-
plexes were
mentioned.
Here I am
not saying
anything
explicity
about the
rhomboid
bifiltration.
It would
be good to
tighten the
analogy in
presentation.

Proof. Item (i) follows immediately from Theorem 16.27 because the normalized multicover
bifiltration of X is exactly the measure bifiltration of ηX . Item (ii) follows from (i) and the
multicover nerve theorem Theorem 12.5.

We also have an similar result for subdivision-Rips bifiltrations of finite metric spaces:

Theorem 16.30 ([30]). For any finite, non-empty metric spaces X, Y ,

dHI(S Rips(X),SRips(Y )) ≤ dGPr(µX , µY ).
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The proof of Theorem 16.30 is closely analogous to that of the stability result for ordinary
Rips complexes Theorem 9.7, using Corollary 16.29 (i) and the multicover nerve theorem
(Theorem 12.5) in place of Theorem 9.7 and the persistent nerve theorem (Theorem 5.25).

Remarks 16.31.

(i) All of these stability results imply corresponding results in terms of the p-Wasserstein
distance, via Proposition 16.26.

(ii) Closely analogous results hold for the unnormalized versions of the bifiltrations, and are
proven in the same way. The main motivations for using the normalized bifiltrations
are that in the normalized setting:

– the interpretation of robustness is a little more natural,

– we can establish a connection to the Wasserstein distance,

– can give a consistency result showing that under mild conditions, the multicover
bifiltration of an i.i.d. sample converges in the interleaving distance to the measure
bifiltration [30].

16.5 Stability and Robustness for Degree-Rips Bifiltrations

The degree-Rips bifiltration is robust to outliers only in a weaker sense than for subdivison-
Rips bifiltration (Theorem 16.30), but is still more robust than the ordinary 1-parameter
Rips filtration. To make this precise, we need invoke the language of generalized interleavings,
where we allow the shift functors to be affine maps, rather than translations of the form
a 7→ a + (δ, δ, . . . , δ): If X and Y are non-empty finite metric spaces with dGPr(X, Y ) ≤ δ,
then DRips(X) and DRips(Y ) are related by a homotopy interleaving where the shift maps
are of the form (k, r) 7→ (k − δ, 3r + δ). The 3 appearing in front of the r means that this
affine interleaving controlls the similarity of the modules only in a rather weak sense. A
simple example in [30] shows that that the constant of 3 cannot be lowered. To obtain this
affine homotopy interleaving, we first first relate the subdivision-Rips and degree bifiltrations
by an interleaving where one of the shift maps is the identity and the other is of the form
(k, r) 7→ (k, 3r). For further details about all of this, see [30]. This was

covered in
class and I
hope to add
the details
in the notes
soon, but I
will wait on
that.

The is also a different, complementary way to approach the stability of Degree-Rips
bifiltrations: Scoccola and Rolle [148] showed that DRips(−) satisfies a Lipschitz stability
bound very similar to Theorem 16.30, but using different distance on metric probability
spaces, the Gromov-Hausdorff-Prohorov distance, which is defined as follows:

Definition 16.32 ([1]). The Gromov-Hausdorff-Prohorov distance between measures µ and
η on metric spaces X and Y is given by

dGHPr(µ, η) = inf
φ,ψ

max(dPr(φ∗µ, ψ∗η), dH(φ(X), ψ(Y ))),

where φ : X → Z and ψ : Y → Z range over all isometric embeddings of X and Y into a
common metric space Z.
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Importantly, since dH is not robust to outliers, neither is dGHPr. However, unlike dGH ,
dGHPr is sensitive to density.

Theorem 16.33 ([148]). For any finite, non-empty metric spaces X, Y ,

dHI(DRips(X),DRips(Y )) ≤ dGHPr(µX , µY ).
I should dou-
ble check
that I have
the constant
of 1 is cor-
rect here.

16.6 Approximation via Subsampling

We now consider a simple but practically useful application of Theorem 16.33 to approximate
computation of degree-Rips bifiltrations.11 Essentially the same approximation scheme
also extends to other bifiltrations, and in particular to the rhomboid bifiltration. But for
concreteness, I’ll focus only on the case of degree bifiltrations.

First, we review the corresponding idea in the 1-parameter setting, which is well known:
Recall that for X a metric space and δ > 0, a δ-sample of X is a set Y ⊂ X such that for
all x ∈ X, d(x, Y ) ≤ δ. I X is finite, a minimal δ-sample Y of X can be computed in time
O(|X||Y |) via a naive algorithm.12

We have dGH(X, Y ) ≤ δ, so Theorem 9.10 implies that db(BH∗(Rips(Y ),BH∗(Rips(X)) ≤ δ.
Thus, the barcodes of Y approximate the barcodes of X in the bottleneck distance. For many
data sets, |X| will be far smaller than |Y |, even for relatively small values of δ. For such
data sets, we can considerably extend the reach of persistence computations at the cost of
approximation error δ, by computing BH∗(Rips(Y ) instead of BH∗(Rips(X).

Now, let consider the natural 2-parameter, density-sensitive extension of this idea. Note
that there exists a surjection f : X → Y such that dX(x, f(x)) ≤ δ for all X. Given such f ,
we can define a multiset Ȳ supported on Y by taking the multiplicity of y to be |f−1(y)|.
The naive algorithm for computing a δ-sample Y extends readily to compute Ȳ (for some
choice of f), again in time O(|X||Y |).

Exercise 16.34. Show that dPr(X, Y ) ≤ δ.

One can extend the definition of DRips(−) to multisets in a natural way [148], such that
for any multiset Z̄ with support Z, the size of DRips(Z̄) is the same as that of DRips(Z). An
easy extension of Theorem 16.33 to finite metric multisets (which already appears in [148])
implies that dHI(DRips(X),Rips(Ȳ )) ≤ dPr(X, Y ) ≤ δ. Thus, we can compute DRips(X) by
approximately computing Rips(Ȳ ).

17 Size and Computation of Degree-Rips Bifiltrations

While we have introduced many natural constructions of bifiltrations from point cloud
and metric data, the degree-Rips bifiltration is arguably the most practical one. The

11A similar idea is implemented in the software Persistable, discussed Section A.2.
12I believe that an |X| log |X| algorithm is also possible for metric spaces of bounding doubling dimension,

using the greedy permutation computations outlined in [108]. See also here for related references and code.
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efficient computation of the degree-Rips bifiltration is therefore an important question for
multiparameter persistence. In this section, we consider the size and computation of degree-
Rips bifiltrations. This could

potentially
be moved
into the sec-
tion on fil-
trations.

Size of Multicritical Bifiltrations Let P be a poset and consider a filtration F : P →
Simp such colimF (the union of all simplices in F ) is a finite simplicial complex. For
σ ∈ colimF , we assume that there exists a finite set S ∈ Rn such that σ ∈ Fr if and only if
r ≥ s for some s ∈ S. Then it can be checked that there exists a minimal such set S, which
call the birth set of σ and write as b(σ). One can store F in memory by storing colimF , compare

to notation
about fil-
trations of
earlier, check
for consis-
tency.

together with the set b(σ) for each σ ∈ colimF . With this in mind, we define the size of F
to be

∑
σ∈colimF |b(σ)|, we write this as |F |. Note that Then F is 1-critical if and only for

each σ ∈ colimF , |b(σ)| = 1, and in this case, |F | is the number of simplices in colim(F ).

Size of the degree-Rips bifiltration For X a finite metric space, colim DRips(X) =
colim Rips(X). We have seen in Section 5.5.1 that the k-skeleton of Rips(X) has k + 1
simplices. A j-simplex σ in DRips(X) satisfies b(σ) ≤ |X| − j. Thus |DRips(X)| = O(Xk+2).
However, if G ⊂ [0,∞)op × [0,∞) is a grid of constant size then DRips(X)G, the k-skeleton
of the G-coarsening of DRips(X) (Section 14.3), satisfies |DRips(X)G| = O(Xk+1), which
is asymptotically the same as for Rips(X). Note, however, that this bound hides constants
which grow linearly with G.

Computing the Degree-Rips Bifiltration The mutiparameter persistence codes RIVET
and Persistable (Section A) both do computations with the degree-Rips. As far as I know, they
are currently the only codes which do so. RIVET computes the full degree-Rips bifiltration,
where as persistable only works with 1-dimensional slices of the bifiltration. (Which approach
is preferable depends on the subsequent computations one wants to do, as well as how fast
computations on both ends can be made to run. If one wants to do computations that
involve the full structure of the homology modules of DRips(X), like computing a direct sum
decomposition, then one cannot just look at slices.)

With that in mind, we now briefly discuss RIVET’s algorithm to compute the k-skeleton
of DRips(X). This algorithm was implemented by Roy Zhao, and the description of the
algorithm here is adapted from TeXed notes describing the algorithm that Roy shared with
me in 2017. The algorithm can be extended to compute the k-skeleton of a coarsening of
DRips(X), and it also extends readily to compute the bifiltration up to some fixed value of
the scale parameter. This extensions are implemented in RIVET, but for simplicity’s sake,
we will not discuss them here.

The recursive structure of Roy’s algorithm is exactly the same as the standard recursive
algorithm used to compute the ordinary Rips filtration, described in Section 5.5.2. The
essential difference between the two computations is that, whereas in the 1-parameter case
we only need to compute the diameter of each simplex, in the 2-parameter case we need to
compute the birth set b(σ) of each simplex σ. When σ is a 0-simplex [j], this is straightforward;
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briefly, we sort the distances of j to all other points to obtain a sorted list L, and then
iterate through L in increasing order, looking for indices at which the value changes. The full
algorithm is given below; as in Algorithm 6, we assume for simplicity that the set underyling
X is {1, . . . , |X|}.

Algorithm 6 ComputeBirthSet

function GetVertexBirths(D, j) ▷ D is the distance matrix representing X
b([j])← {}
L← Dj,∗ ▷ We assume L is indexed from 0
sort(L)
for i = 1 to |X| − 1 do

if L[i] ̸= L[i− 1] then
Insert {(i, L[i− 1])} into b([j]).

Insert {(|X|, L[|X| − 1]]} into b([j]).

return b([j])

In the context of our recursive algorithm, the computation of b(τ) where dim τ > 0
amounts to solving the following problem: Given birth sets b(σ), and b([j]) for a 0-simplex
[j], and the diameter of τ := σ ∪ {j}, compute b(τ). This can be seen in abstractly as a nice
computational geometry problem: Given a pair of closed upsets I, J ⊂ R2 whose boundaries
are staircases, as well as a closed upper half plane H, find all minimal points of I ∩J ∩H; see
?? below for an illustration. Assuming the birth sets are ordered according to the value of
one of the indices, this problem can be solved via a sweep-line algorithm; I omit the details. but add

these details
in later.

Subsampling vs. Coarsening We have described two different procedures for controlling
the cost of a degree-Rips bifiltration computation, at the expense of an interleaving approx-
imation error: Subsampling and coarsening. The following question then arises: Given a
total allowed interleaving error δ, how do we navigate the tradeoff between subsampling and
coarsening? We leave this as an open question.
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Figure 17.1: The staircase which bounds intersection of the three overlapping shaded regions is
shown in black (offset slightly for clarity). Computing b(τ) for dim(τ) > 0 amounts the problem of
finding all lower-left corners of such a black staircase.

18 Hardness of Computing the Interleaving Distance

Between Persistence Modules

The bottleneck distance on 1-parameter persistence modules (which as discussed earlier, is
equal to the 1-parameter interleaving distance) turns out to be readily computable. The
problem can be cast as a matching problem of the kind commonly studied in computer
science. The state of the art approach is described in a paper 2016 by Kerber and Morozov,
Nigmetov and has implemented in the Hera software package. The algorithm runs in time
O(n1.5 log n), where n is the total number of intervals in the two barcodes.

Given the important question of if and how the multi-dimensional interleaving distance
can be computed has been of interest to researchers working on the theoretical foundations
of TDA for several years. The main conjecture here has been that the interleaving distance
is NP-hard to compute.

In 2018, the combined results of two papers—the first by Bjerkevik and Botnan and
the second by Bjerkevik, Botnan, and Kerber—established that over a finite field K, the
interleaving distance on n-parameter persistence modules is NP-hard to compute for any
n ≥ 2. In this section, we will give an informal review of NP-hardness and then very briefly
outline of the argument used to prove hardness of the interleaving distance. (These papers
also have a number of other very interesting results that will not be discussed here.)
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18.1 NP-Completeness and NP-Hardness

The following discussion of basic concepts on computer science will be informal. For example,
we will not bother to give formal definitions of an algorithm or a computational problem.

Definition 18.1. A computational problem A is said to be in the complexity class P if there
exists an algorithm which solves A in time polynomial in the size of the input—that is, there
is some polynomial f such that the number of operations required by this algorithm for an
input of size n is at most f(n).

For example,

• sorting a list of n elements can be solved in O(n log n) = O(n2) time, so the problem of
sorting a list is in P .

• Solving a linear system in n equations and n variables over a finite field takes O(n3)
time, so is in P .

• Computing the bottleneck distance between two barcodes is in P .

Definition 18.2. A decision problem is a computational problem whose answer is “yes” or
“no”.

Example 18.3. The problem of determining whether a solution exists to a linear system is
a decision problem, but actually solving the linear system is not a decision problem.

Definition 18.4. A decision problem A is in the complexity class NP if for any instance
with the problem for the answer is yes, there is a certificate of proof that the answer is yes
such that given this certificate, we can verify that the answer is yes in polynomial time.13

Example 18.5. Any decision problem in P is in NP : The certificate of proof can be taken
to be trivial: To verify the answer is yes, we just solve the problem.

Example 18.6 (3-SAT). Here is a famous example of a problem which is in NP but is not
known to lie in P (more on this below): Consider a boolean expression of the form

(x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5 ∨ x6) ∧ (x7 ∨ x8 ∨ x9) ∧ · · · ∧ (x3n−2 ∨ x3n−1 ∨ x3n),

where each xi is a variable. The 3-SAT problem is the problem of deciding whether whether
exists an assignment of each of the variables such that the expression evaluates to 1.

Here, the certificate of proof for a “yes” instance of the problem is simply an assignment
of the variables such that the expression evaluates to 1.

13NP stands for “non-deterministic polynomial” time; this is related to the technical concept of non-
deterministic Turing machines. This may give the impression that NP some how refers to randomized
algorithms, but that is not the case.
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There are many, many problems of importance to applications which are in NP but for
which no polynomial time solution is known. One wants establish theoretically that such
problems are hard. However, the question of whether every problem in NP is also in P is the
most important open problem computer science (the P=NP problem), and is arguably the
second most famous open math problem in the world (the Riemann hypothesis being the
first.) The answer to this question is widely thought to be “no.”

Since showing directly that a problem is not in P is very hard, we measure the hardness
of problems by comparing their hardness to that of other problems. For this, the following
definition is key.

Definition 18.7. Given two computational problems A and B, we say that A reduces to B
in (polynomial time) if A can be solved by solving polynomially many instances of B, plus
doing a polynomial amount of additional work. We will sometimmes write A =⇒ B to
denote that A reduces to B.

If A reduces to B, we think of B is being at least as hard as A. (In this interpretation, a
polynomial amount of work is regarded negligible.)

Definition 18.8. A problem A (not necessarily a decision problem, and not necessarily in
NP) is said to be NP-hard if any problem in NP reduces to A.

Thus an NP-hard problem is a problem that is at least as hard as any problem in NP, in
the above sense; In particular, if you could solve one NP-hard problem in polynomial time,
you could solve any problem in NP in polynomial time, which would imply P=NP.

Definition 18.9. A problem which is NP-hard and also in NP is called NP-complete.

Theorem 18.10 (Cook-Levin Theorem). 3-SAT is NP-complete.

In fact, 3-SAT was the first problem to be shown to be NP-complete.

Proposition 18.11. If a problem A is NP-hard and A reduces to a problem B, then B is
NP-hard.

Proof. The proof of this amounts to the easy observation that if C =⇒ A and A =⇒ B,
then C =⇒ B. That is, the “reduces to” relation is transitive.

Proposition 18.11 suggests a general strategy for showing that a problem B is NP -hard:
Show that some NP-hard problem A reduces to B. Using this strategy, thousands of problems
of interest in applications have been shown to be NP-hard. Of course, this strategy is only
viable if one can show directly that at least one problem is NP-hard. That is why the
Cook-Levin theorem is important. In fact, showing NP-hardness by reducing to 3-SAT is
very common.
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18.2 Computing the Interleaving Distance is NP-Hard

We consider the problem of computing the interleaving distance dI between finitely generated
Zn-indexed persistence modules. (The hardness result for this case immediately yields a
hardness result for the Rn-indexed case.)

We assume the modules are given to us as input via finite presentation.

Definition 18.12. Let 1-IL denote the problem of deciding whether two persistencem odules
are 1-interleaved.

Exercise 18.13. If Modules M and N are δ-interleaved, then they are also δ′-interleaved for
all δ′ > δ.

Lemma 18.14. 1-IL reduces to the problem of computing dI

Proof. For Zn-indexed modules, the interleaving distance can only take values in the non-
negative integers. Hence, by the above lemma, if dI(M,M) ≤ 1, then M and N are 1-
interleaved. On the other hand, if dI(M,N) > 1, then M and N are are not 1-interleaved.

Thus, to show that computing dI is NP-hard, it suffices to show that 1-IL is NP-Hard.

Definition 18.15 (The Constrained Invertibility Problem (CI)). Consider two m×n matrices
A, B with some of the entries in each matrix set to 0, and remaining entries left unspecified
(i.e., given as variables). The constrained invertibility problem is to decide whether there
exists an assignment of the each of the unspecified entries of A and B such that the resulting
matrices are inverses.

Example 18.16. . This is example is taken from the paper of Bjerkevik, Botnan, and Kerber.
For

A =

∗ ∗ ∗∗ 0 ∗
∗ ∗ ∗

 , B =

∗ ∗ ∗∗ ∗ 0
∗ 0 ∗

 ,

The contrained invertibility problem has a solution, namely,

A =

0 1 0
1 0 0
0 0 1

 , B =

0 1 0
1 0 0
0 0 1

 .

Theorem 18.17 (Bjerkevik, Botnan 2018). CI reduces to 1-IL.

The above result represented nice partial progress on the complexity of computing the
interleaving distance.

Theorem 18.18 (Bjerkevik, Botnan, Kerber 2018). 3-SAT reduces to CI.
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In view of this theorem and the ones mentioned above, we have a sequence of reductions

3-SAT =⇒ CI =⇒ 1-IL =⇒ computing dI ,

It follows that dI is NP-Hard.

Remark 18.19. In fact, Bjerkevik et al. show that computing dI is NP-Hard even when
we restrict attention to interval-decomposable bipersistence modules. Moreover, the authors
show that the problem is NP-Hard even when we assume that the persistence modules are
indecomposable.

19 Quiver Representations

Quiver representation theory studies the indecomposables of (not-necessarily) commutative
diagrams of vector spaces. It is a decades old subject, and very well developed. Good
introductory resources include a Notices article by Derksen and Weyman and the appendix of
Steve Oudot’s book on persistence. The textbook book of Assem, Simpson, and Skowroński
also comes highly recommended by experts in the field. This has three volumes. Some of
what is below is discussed in Volume 3. In preparing this exposition, I consulted with Magnus
Botnan and Uli Bauer about some technical questions. I thank them for their help.

Definition 19.1. A quiver Q = (V,E) is a finite directed graph. Multiple edges between a
pair of vertices are allowed, as are self-edges. We write a directed edge e from vertex v to
vertex w as e : v → w.

Definition 19.2. Let us fix a choice of field K. Informally, representation M of a quiver
Q = (V,E) is a (not necessarily) commutative diagram of vector spaces indexed by Q.
Formally, M consists of:

• A choice of K-vectors space Mv for each v ∈ V .
• A choice of linear map Mv,w : Mv →Mw for each edge e : v → w ∈ E.

Remark 19.3. Any category J with finite object set and finite hom set determines a quiver
Q = (V,E) with V = obJ and E = homJ . A functor J → Vec determines a representation
of Q. Thus, quiver representations generalize functors J → Vec for J is a finite category.

Definition 19.4. For M,N representations of a quiver Q = (V,E), we define a morphism
f : M → N to be a collection of linear maps {fv}v∈V such that for all e : v → w ∈ E, the
following diagram commutes:

Mv Nw

Nv Nw

Me

fv fw

Ne

Note the similarity to the definition of natural transformation; the definitions are nearly
identical. With this definition of morphism, the representations of Q form a category, which
we denote as Rep(Q).
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Direct sums of quiver representations are defined pointwise, in essentially the same way as
for Vec-valued functors. Thus we also obtain a definition of indecomposable representations.

19.1 Classification of Quivers

Definition 19.5. A quiver is of finite type if it has a finite number of isomorphism classes of
indecomposables.

Example 19.6. The structure theorem for persistence modules shows that a quiver of the
form • → • → · · · → • is of finite type.

Definition 19.7. Informally, a quiver is of tame type if the collection of all isomorphism
classes of indecomposable representations can be parameterized as the disjoint union of
countably many 1-parameter families of iso. classes of indecomposables.

Example 19.8. For K an algebraically closed field, the quiver with one vertex and one edge
is tame. The indecomposables whose vector space has dimension n correspond bijectively to
the n× n Jordan blocks, and these form a 1-parameter family.

Example 19.9. The following quiver is tame.

• •

•

•

•

Definition 19.10. A quiver Q is of wild type if for any other quiver Q′, there is a functor
F : Rep(Q′)→ Rep(Q) with the following properties:

• F is fully faithful
• F is exact (i.e., it preserves exactness of sequences).

Remark 19.11. The literature contains various definitions of wild. The one given here
is called strongly wild type in Assem et al. volume 3, Chapter XIX, Definition 1.3(b). As
explained there, the condition that F is fully faithful implies that F sends indecomposables
to indecomposables. The condition that F is fully faithful implies that F (M) ∼= F (N) then
M ∼= N , and that if M = M1 ⊕M2, then F (M) = F (M1) ⊕ F (M2). In these senses, the
functor F “embeds” the representation theory of Q′ into the representation theory Q.

Thus, the representation theory of a wild quiver “contains” the representation theory of
any other quiver Q.

Example 19.12. The quiver with a single vertex and two edges is of wild type. The
construction of F is relatively simple.
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Example 19.13. The following quiver is wild.

• •

•

•

•

•

The following “trichotomy” result is remarkable and surprising.

Theorem 19.14 (Drozd). Over an algebraically closed field K , every quiver is of finite type,
tame, or wild.

The problem of parameterizing the indecomposables of aquiver of wild type is generally
considered to be hopelessly difficult. A hint of the complexity of this is given by the following
example.

Example 19.15. For the wild quiver of Example 19.13, we exhibit n-parameter families of
indecomposable representations, for each positive integer n. The example was presented by
Steffan Oppermann’s 2017 Lecture at Banff, an introduction to quiver representation theory
which is recorded and available online.

For α⃗ ∈ Rn, Consider the quiver representation M(α⃗), given by

Kn+1 Kn+1 ⊕Kn+1

Kn+1

Kn+1

Kn+1

Kn+1

(
Id

0

)
(

0

Id

)
(

Id

Id

)
(

Id

J

)
(

Id

P

)

where the morphisms are given in block form, J is the (n+ 1)× (n+ 1) Jordan block with
zero diagonal, and P = P(α⃗) is the matrix whose entries on the super-diagonal are α⃗, and
whose remaining entries are 0. M(α⃗) is indecomposable, and if α⃗ ̸= α⃗′, then M(α⃗) ̸∼= M(α⃗′).
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Remark 19.16. It follows from Example 19.15 and the definition of wildness that any wild
quiver has n-parameter families of indecomposable representations for each positive integer n.
Theorem 19.14 then tells us in particular that (for K algebraically closed) if a quiver has
2-parameter families of indecomposable representations, then it has n-parameter families of
indecomposable representations for each positive integer n.

Explicit Description of the Finite Type and Tame Quivers It turns out that whether
a quiver is finite type does not depend on the orientation of the arrows in the quiver, but only
on the underlying directed graph. The same is true for tame type. One can give a complete
enumeration of the finite type and tame quivers without much trouble—they fall into just a
few families. I gave the enumeration in class, but because it would be burdensome to TeX
the diagrams. So for a written reference on this I am just going to refer you to the article
“Quiver Representations” by Harm Derksen and Jerzy Weyman, in the Notices of the AMS.
The enumeration is given on the third page.

Zigzag Persistence modules Of particular interest to applied topologists is the fact that
a quiver of the form

• → • ← • → · · · ← • → • ← •

is of finite type. In TDA, we call representations of such a quiver zigzag persistence modules.
In fact, the indecomposables of a zig-zag persistence module are analogues of the interval
modules we have in the case where all the arrows are pointing right, i.e., they look for example
like this:

0→ 0← 0→ K
IdK←−− K

IdK−−→ K
IdK←−− K

IdK−−→ K ← 0→ 0← 0→ 0← 0

Remark 19.17. Magnus Botnan recently showed that this decomposition result extends to
the case where the zig-zag quiver extends out infinitely in both directions. This was a folklore
result in representation theory, but there was apparently no proof in the literature. Botnan
gives a very nice, short proof, which reduces the problem to the case of finite zigzag quivers.

19.2 Commutative Quiver Representations and Bipersistence Mod-
ules

The theory outlined above concerns the incomposables of not-necessarily-commutative dia-
grams of vector spaces. If one restricts attention to commutative diagrams of vector spaces
indexed by quivers, the definitions of finite-type, tame, and wild quivers still make sense,
and it turns out that there is an analogous trichotomy theorem for the commutative setting.
However, the quivers falling into each category are now different, and now do depend on
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the orientation of the edges. For example, as Magnus Botnan has explained to me, in the
commutative setting, the quiver

• •

• •
is finite type, but the quiver

• •

• •
is tame.

For quivers having the shape of a finite rectangular grid with all arrows pointing up or
to the right, it is known that the 2 × 5, 5 × 2, and 3 × 3 grids are tame; all grids strictly
contained in one of these are finite type; and all other grids are wild.

A commutative representation of a finite rectangular grid G can always be extended to a
Z2-indexed persistence module by taking the vector spaces indexed by vertices not in G to be
0. This extension defines a fully faithful and exact functor. It follows that the representation
theory of 2-parameter persistence modules is wild, i.e., as complicated as the representation
theory of any quiver representation.

Example 19.18. Let Q be the quiver with 5 sources and one sink from Example 19.13.
We show that the wildness of of 2-parameter persistence follows from the wildness of Q. It
suffices to define an exact, fully faithful functor F : Rep(Q)→ Fun(Z2 → Vec). We define F
on objects as follows, If M is given by the following diagram

A F

B

C

D

E

f

g

h

i

j
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then F (M) is the bipersistence module whose restriction to a 5× 5 grid is

A F F F F

0 B F F F

0 0 C F F

0 0 0 D F

0 0 0 0 E

f

g

g

h

h

i

i

j

where all maps between copies of F are the identity. Outside of the 5× 5 grid, we take all
vector spaces of F (M) to be 0. The action of F on morphisms is defined in the obvious way.
It is easy to check that this functor is fully faithful and exact.

Note that by applying F to the indecomposables of Example 19.15, we get n-parameter
families of indecomposable persistence modules for each positive integer n.

20 Computing Minimal Presentations of Bipersistence

Modules

In this section, we address the fundamental problem of computing a minimal presentation
of a bipersistence module, given as input a bifiltration. This section follows a recent paper
by Matthew Wright and me. The d-parameter version of this problem is a classical problem
in commutative algebra; it is typically solved using Gröbner basis techniques. However, it
turns out that the 2-parameter version of the problem allows for a streamlined approach and
exposition. The key algebraic subproblem is the computation of the kernel of a morphism of
free bipersistence modules.

The algorithm described here has been implemented in RIVET since 2018, and works
well in practice.

20.1 Minimal Presentations

Recall that a presentation of a d-parameter persistence module is a morphism ∂ : F 1 → F 0

of free persistence modules with coker(∂) ∼= M . Thus, a presentation for M is simply the
data of the last morphism in a free resolution for M .

The algorithm we give also computes the Hilbert function and bigraded Betti numbers of
M as a side product.

Definition 20.1. A presentation is said to be minimal if extends to a minimal resolution.
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It follows from the theory of minimal presentations that a minimal presentation of a
module is unique up to isomorphism and any minimal presentation can be obtained (up to
isomorphism) by summing with maps of the form

G
IdG−−→ G or G→ 0,

where G is free.

Matrix Representation of Minimal Presentations We have seen that we can represent
a morphism of free persistence modules by a matrix with row and column labels. The
uniqueness of minimal presentations tells us that the dimensions of this matrix are uniquely
determined, as are the row and column labels (up to permutation). However, the matrix itself
is not unique, and this means that minimal presentations are unlikely to be useful in TDA
in the way that barcodes are in the 1-parameter setting, e.g., as input to machine learning
algorithms or statistical tests. Nevertheless, minimal presentations are useful computational
intermediates; they encode the full isomorphism structure of a d-parameter persistence module
in an efficient way, and can serve as input to algorithms to compute invariants or metrics.

20.2 FI-Reps: Matrix Representations of Short Chain Complexes

The input to our algorithm for computing minimal presentation is (basically) a short (three-
term) chain complex of free bipersistence modules, represented in matrix form. We call this
input an FI-Rep. Such a chain complex has a unique homology module M , and the output
of the algorithm is a presentation matrix for M .

Let us explain this in more detail. Here and throughout, we work with N2-indexed
bifiltrations and bipersistence modules, though our algorithm works just as well for R2-
indexed objects.

For M a bipersistence module, let

C
f−→ D

g−→ E.

be a chain complex of free bipersistence modules with ker g/ im f ∼= M . Choosing ordered
bases for C, D, and E, we can represent this chain complex by matrices

[f ] and [g],

with each row and each column labeled by an element of N2. In fact, to encode M up to
isomorphism, suffices to keep only the column labels: The row labels for [g] turn out to be
unnecessary, and the row labels for [f ] are same as column labels for [g].

We call the pair of column-labeled matrices ([f ], [g]) an FI-Rep for M ; this stands for
free implicit representation. In practice, we store the matrices [f ] and [g] in a column-sparse
format, as we did for ordinary persistence computation.
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How FI-Reps Arise from Data In Section 8.3, we explained that for any N-indexed
filtration F , a straightforward construction gives a chain complex C(F ) of free bipersistence
modules whose ith homology group is Hi(F ). The same is true in the 2-parameter setting,
provided our bifiltration F is 1-critical. For a multi-critical bifiltration F , we can still
construct the chain complex C(F ), but its modules needn’t be free. Instead, Ci(F ) will be a
direct sum Cj(F ) ∼= ⊕σ a j-simplex of colim(F )S

σ, where

Sσz =

{
K if σ ∈ Fz,
0 otherwise.

Sσy,z =

{
IdK if σ ∈ Fy,
0 otherwise.

For example, if a simplex σ ∈ colim(F ) is born at indices (3, 0), (2, 1), and (0, 2) , then
Sσ looks like this:

...
...

...
...

K K K K · · ·

K K K K · · ·

0 0 K K · · ·

0 0 0 K · · ·
It is an observation of Chacholski, Scolamiero, and Vaccarino that if the bifiltration F is

multicritical, a simple construction converts the short chain chain complex

C(F ) = Cj+1 ∂j+1

−−→ Cj(F )
∂j−→ Cj−1(F )

into an FI-Rep for Hi(F ). We will not go into the details of this, but they are not difficult.

20.3 Computation of a Semi-Minimal Presentation

Suppose we are given an FI rep ([f ], [g]) for M as above. To compute a minimal presentation
for M , we first compute a presentation that has the following partial minimality property:

Definition 20.2. We say a presentation f : F → F ′ is semi-minimal if each non-minimal
summand of the presentation is of the form

G
IdG−−→ G.

To explain how we compute a minimal presentation from data, we need the following fact:
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Proposition 20.3. If γ : F → F ′ is a morphism of free finitely presented 2-parameter
persistence modules, then γ is free.

Proof. This follows from Hilbert’s Syzygy theorem, together with the structure theorem for
minimal presentations. We leave the details as an exercise.

In outline, our algorithm for computing a semi-minimal presentation proceeds in three
steps:

1. Using [f ] as input, find a minimal ordered set of generators S for im f .
2. Compute a basis Bker for ker g.
3. Express each element of S in Bker-coordinates; put resulting column vectors into a

matrix P , with column labels the bigrades of S and row labels the bigrades of Bker.

Each of these steps requires requires further explanation.

• Let us note that the columns [f ] already specify an ordered set of generators for
im f , much in the same way that in ordinary linear algebra, the columns of a matrix
representing a linear map T represent vectors spanning imT . However, that set of
generators may not be minimal to start.

• Note that in view of Proposition 20.3, ker g is free, so step 2 makes sense.
• We remark that the algorithms for steps 1 and 2 are very similar: Both steps can be

carried out using a bigraded variant of the standard reduction of Section 7.2 that we
call the bigraded reduction. We give the details below, focusing on the case of kernel
computation.

• Step 3 is just ordinary linear algebra: For each element of S, we solve a linear system.
It is straightforward to carry this out efficiently in the column-sparse setting, using a
version of the standard reduction.

• Even if step 1 is omitted, this approach still yields a presentation, but it may not be
semi-minimal.

20.4 Kernel Computation in the 1-Parameter Case

To prepare for a discussion of kernel computation in the 2-parameter case, we consider the
same problem in the 1-parameter case.

f : M → N be a map of free persistence modules, and let B, B′ be ordered bases for M
and N , with B in order of increasing grade.

The following slight extension of the standard reduction computes ker f :
Input: The column-labeled matrix R := [f ] representing f with respect to B and B′

Output: Basis Bker f for ker f (represented as column vectors with respect to the basis B):

Algorithm:
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1. Run the standard reduction on R with a “helper matrix” V , initially the identity.
2. For each column j zeroed out in R, add the vector in Mlabel(j) represented by the jth

column of V to Bker f .

Example 20.4. Let

M = Q1 ⊕Q1 ⊕Q3, N = Q0 ⊕Q0 ⊕Q0,

and let f : M → N be given with respect to the standard bases by the matrix

1 1 3( )0 1 0 1
0 0 1 1
0 1 1 0

The computation of ker f proceeds as follows.

1 1 3( )1 0 1
0 1 1
1 1 0( )1 0 0
0 1 0
0 0 1

Add col. 1 to col. 2−−−−−−−−−−−→

1 1 3( )1 1 1
0 1 1
1 0 0( )1 1 0
0 1 0
0 0 1

Add col. 2 to col. 3−−−−−−−−−−−→

1 1 3( )1 0 0
0 1 0
1 1 0( )1 0 0
0 1 1
0 0 1

Thus, we find that

Bker f =


0

1
1

 ∈M3.

20.5 Kernel Computation in the 2-Parameter Case

The algorithm for the 1-parameter case turns out to extend without undue pain to the
2-parameter case. The algorithm simultaneously makes essential use of three orders on N2:
The lexicographical order, the colexicographical order, and the usual partial order.To explain
the details, let f : M → N be a map of free bipersistence modules, and let B and B′ be
ordered bases for M and N , with B in colexicographical order on the bigrades. Here is the
algorithm:

Input: Column-labeled Matrix R := [f ] representing f with respect to the bases B and B′.
Output: Basis for ker f (represented with respect to the basis B):
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Let Rz denote the submatrix of R consisting of columns with label ≤ z. (Here ≤ de-
notes the product partial order on N2.)
Algorithm:

1. Initialize a helper matrix V to be the identity matrix of dimensions the number of
columns of R.

2. For each z in lexicographical order :

- Run persistence algorithm on Rz,
- Also perform each column operation on V ,
- If column j gets zeroed out, add the vector in Mz represented by the jth column

of V to the basis for ker f .

Remark 20.5. In the algorithm above, we never reset or copy R or V , we just perform
operations on the single pair of matrices throughout.

Remark 20.6. We can carry out step 1 of the algorithm for computing a semi-minimal
presentation using essentially the same algorithm, but without a helper matrix; columns of R
with label z that do not get reduced to 0 at index z are added to S.

Remark 20.7. To efficiently implement the above algorithm for computing a kernel, one
needs to work with pivot arrays, as in the standard reduction. In fact it is sufficient to
maintain a single pivot array for the entire computation. The details of this, which are
perhaps not entirely obvious, are given in my paper with Matthew.

Exercise 20.8. Let

M = Q(0,0) ⊕Q(1,0) ⊕Q(0,1) ⊕Q(1,1), N = Q(0,0) ⊕Q(0,0) ⊕Q(0,0),

and let f : M → N be given with respect to the standard bases by the matrix

(0, 0) (1, 0) (0, 1) (1, 1)( )(0, 0) 1 1 0 1
(0, 0) 1 0 1 1
(0, 0) 1 1 1 0

By running the algorithm for kernel computation described above, show that

Bker f =




0
0
1
1

∈M(1,1)


is a basis for ker f .

In brief, the reason the algorithm works is the following: We are implicitly computing
compatible bases for ker fz : Mz → Nz for all z. Just after reducing Rz, the only columns
ever added to columns of Rz are also in Rz. Thus computations at earlier indices do not
cause problems with the computation at index z. For the full correctness proof, I refer the
reader to the paper.
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20.6 Minimizing a presentation

Algorithm:
For each column i:

1. Check if the label of the column i is equal to the row-label of the pivot.
2. If so,

– zero out the row of the pivot by adding column i to columns to the right.
– Remove both the column i and the row of the pivot.

This is a bigraded variant of the standard procedure in commutative algebra for minimizing
a resolution. The algorithm is embarrassingly parallel, and in fact RIVET has a parallel
implementation. The proof of correctness is left as an exercise.

20.7 Complexity Bounds

If the ([f ], [g]) is an FI-Rep of a bipersistence module M , where the maximum dimension of
either matrix is n, then over a finite field, our algorithm for computing a minimal presentation
for M runs in O(n3) ttme and O(n2) memory.

A Software for Multiparameter Persistence

Software for multiparameter persistence has advanced considerably in the last few years, yet
is still in a gestational phase, which much critical work ahead. The following briefly discusses
some of the publicly available software for multiparameter persistence, as of February 2023.
Feel free to let me know if there is some software that should be added to this list.

A.1 RIVET

RIVET [126] is a software for visualization and analysis of 2-parameter persistence, written
in C++, using qmake for the graphical user interface. It was the first publicly available
software for 2-parameter persistent homology. The RIVET project was founded by Matthew
Wright and me in 2014, and several others have contributed to its development; the main
additional contributors are Anway De, Bryn Keller, Simon Segert, Alexander Yu, and Roy
Zhao. RIVET supports arbitrary bifiltrations or free chain complexes as input, and has
built-in support for degree-Rips and function-Rips. The RIVET computational backend
centers on minimal presentation computation, using an efficient and novel approach [127]. It
also a provided an interactive visualization of Hilbert Function, Fibered Barcode, Bigraded
Betti numbers. RIVET’s interactive visualization of the fibered barcode was initially a major
focus of the project, and a lot of mathematical work and implementation work went into this.
The name RIVET originally was shorthand for Rank Invariant Visualization and Exploration
Tool, though we eventually abandoned this long form of the name.
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RIVET’s strengths include a polished and intuitive front end; and several features not
currently found in any other code, e.g. computation of degree-Rips bifiltrations and their
minimal presentations, and realtime visualization of the fibered barcode. In its current
form, it also has some notable limitations: It currently does not support exploring clusters
associated to an H0 persistence module; it does not implement important recent advances in
minimal presentation computation (see Section A.3); some organizational issues with the code
make development and interfacing with other software more challenging than they should be;
and while RIVET has a Python wrapper, it has not been updated to incorporate RIVET’s
most recent features, and does not handle visualization, so RIVET is not well integrated into
the Python ecosystem. add some-

thing about
applications.Remark A.1. One of the main features of RIVET’s visualization is an interactive scheme

for visualizing the fibered barcode: The user selects the line L by clicking and dragging the
mouse, and the display of the barcode B(M ◦L) updates in realtime. To support this real-time
interactivity, RIVET precomputes a data structure called the augmented arrangement, which
can be queried for the barcode B(M ◦L) along a generic line L in time O(|B(M ◦L)|+ log n),
where n is the size of a grid containing the supports of βM0 and βM1 [126].

A.2 Persistable

Persistable is a recent software for bipersistent clustering by Alex Rolle and Luis Scoccola,
whose design is grounded in ideas appearing in [145]. It is written in Python, with a C
backend for the most costly computations. Among codes for 2-parameter persistence, it is the
software closest to RIVET in terms of scope and visualization features. Indeed, much of the
visualization functionality of Persistable borrows from RIVET’s design. But persistable also
introduces practical new visualization features not present in RIVET. Currently, Persistable
only handles H0 persistence modules, and only certain classes of density-sensitive bifiltrations;
though this may change in the future. Indeed, Persistable is being very actively developed
by its authors (as of February 2023), and many new features have been added in recent
weeks. One key features is the ability to interactively explore the clusters in data (not only
the isomorphism type of an H0 persistence module). In some form, this has also been an
important todo for RIVET for a long time, but was never completed. Persistable also has
the advantage of being well integrated into Python. Unlike RIVET, Persistable’s backend
currently does not compute minimal presentations; it is based instead on fast 1-parameter
computations.

A.3 mpfree

mpfree is a code devoted to one specific but important problem in MPH: computing the
minimal presentation of a persistent homology module, given a short chain complex of free
modules as input. We will talk about such computations in Section 20. mpfree implements
an algorithm by Michael Kerber and Alex Rolle [100, 118], which is an improved version of
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the minimal presentation algorithm of Lesnick and Wright implemented in RIVET [127]; the
improvements lead to significant and often dramatic improvements in speed and scalability,
significantly lowering the barrier to practical 2-parameter persistence computation. The code
also makes use of a prior algorithm of Kerber and Fugacci [99] for minimizing a resolution or
chain complex.

A.4 Multiparameter Persistence Landscapes

Oliver Vipond has written Python code for computing multiparameter persistence landscapes
[167] in the 2-parameter setting. The code uses RIVET as its backend.

A.5 multipers

The package multipers, written by Carriére in C++ and Python, is a code for computing
and testing several vectorizations of multiparameter persistence, namely the multiparameter
persistence images, a vectorization of multiparameter persistence modules introduced by
Carriére and Blumberg, Vipond’s multiparameter persistence landscapes [167], and the
multiparameter persistence kernel of Corbet et al. [75].

A.6 Multipersistence Module Approximation

Multipersistence Modules Approximation (MMA), written by Loiseaux and Carriére, imple-
ments ideas from [128] about approximating persistence modules by interval-decomposable
modules. It incorporates some of the code from multipers.

A.7 Hera

Hera, written by Arnur Nigmetov, is a code originally written for fast computations of
Wassterstein and bottleneck distances between barcodes, based on a collaboration with
Kerber and Morozov [116]. Kerber and Nigmetov [117] subsequently introduced an algorithm
for the efficient approximation of the matching distance on bipersistence modules, building on add internal

refideas of [24]. An implementation of this was added to Hera; as matching distance computation
relies heavily on bottleneck distance computation, this was a natural choice.

A.8 Code for Expediting Function-Rips Bifiltration Computations

Alonso, Kerber, Pritham [6] have given an algorithm which removes edges from the 1-skeleton
of a function-Rips bifiltration, without changing its topology (i.e., the input and output
are weakly equivalent), in order to expedite the computation of persistent homology. They
have released a Rust implementation. In most of the examples they consider, this leads to
substantial improvements in the speed of minimal presentation computation.
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A.9 Code for Rhomboid Bifiltration

Georg Osang has a code for computing the rhomboid bifiltration and higher-order Delaunay
mosaics of points in R2 or R3, which implements an algorithm by Osang and Edelsbrunner
for this; see Section 13 for a discussion of the Rhomboid bifiltration. Osang’s code can handle
a few hundred points in R3, but the size of the rhomboid tiling grows very quickly with size
of the data set, making practical computations of the full rhomboid tiling difficult. To control
the cost of the computation, the code allows us to compute the rhomboid tiling only up to
some specified value of the depth parameter k.

A.10 TopCat

Oliver Gäfvert’s code TopCat, written in Java, was the first publicly available code for
working n-parameter persistence for n > 3. It handles input in the form of a list of distance
matrices, or a multifiltered simplicial complex. Among other things, it computes stable ranks,
an invariant introduced by Scolamiero et al. [149].

B Visualization of Invariants in RIVET

In class and in the handwritten notes (Lect. 31), I gave many more examples of RIVET visualizations. Later, I will incor-
porate those into this section.

As noted in Section A.1, we can use the RIVET software [126, 162] to visualize the Hilbert
function, fibered barcode, and bigraded Betti numbers of bipersistence modules. Here, we
consider several examples.

We first explain how to interpret the RIVET figures of this section. In each figure, the
x-axis is mirrored in each figure so that values decrease from left to right. The Hilbert function
is represented by greyscale shading: In each figure, the darkness of shading is proportional to
the vector space dimension, and the lightest non-white shade represents a value of 1. The
bigraded Betti numbers are represented by translucent colored dots whose area is proportional
to the value; the 0th, 1st, and 2nd Betti numbers are shown in green, red, and yellow. For the
fibered barcode visualization, the query line L is shown in blue, and the barcode is shown in
purple, with each interval offset perpendicularly from L.

To control the cost of the computation, we coarsen the bifiltration, i.e., snap each birth
grade of a simplex in the bifiltration to a grid. The size of the grid considered in the following
examples varies between 100× 100 and 250× 250, depending on the example.

B.1 10 points in the plane

As a first simple example, Fig. B.1 visualizes the 1st PH of the degree-Rips bifiltration of the
point cloud in Fig. 10.1.
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Figure B.1: RIVET visualization of the H1 homology of the Degree-Rips bifiltration of the data
set considered in Fig. 10.1.

B.2 Clusters in R2

Let us consider the following three point clouds in R2 :

(a) (b) (c)

Figure B.2

Note that the cluster structure is stronger in figure 1.A than it is in figure 1.B, in the
sense that the two clusters are separated by a larger distance in 1.A. The cluster structure
is again stronger in 1.A than in 1.C, but now for a different reason than above: In 1.C,
the cluster structure has been weakened by the addition of points of slightly lower density
between the clusters. As this suggests, the density of clusters, relative to the density of
surrounding regions, is also a natural measure of the strength of cluster structure. It is a
qualitatively different measure of strength than the distance separating the clusters. This
illustrates the idea that strength of cluster structure in data is fundamentally a 2-parameter
problem, the parameters being density and spatial scale [52].

Fig. B.4 shows the degree-Rips bifiltration of each of these data sets, using 250 × 250
coarsening. The plots are zoomed in a little to highlight the most interesting regions of
parameter space. In each subfigure, the large region consisting of all grey pixels represents
one of the clusters, while the subregion of dark grey pixels represents the other. The shapes
and locations of these regions encode information about the size, shape, and separation of
the clusters. The difference between the shapes of the dark grey regions in figures (b) and (c)
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reflects the qualitative difference between Figures B.2 (b) and B.2 (c),

(a) (b) (c)

Figure B.3: Visualization of the 0th degree-Rips PH of the three point clouds of Fig. B.2.

Fig. B.4 shows H0 of a density-Rips bifiltration of the same data, using a ball density
function, as in Example 12.1. We choose the radius of the ball to be the 20th percentile of
the non-zero distances between points.

(a) (b) (c)

Figure B.4: Visualization of the 0th function-Rips PH of the three point clouds of Fig. B.2.

B.3 HIV Genomes

Fig. B.5 visualizes the 0th PH (i.e., cluster structure) of the degree-Rips bifiltration of 1088
pre-aligned HIV-1 genomes from [59], metrized using the Hamming distance.14

Like other viruses, HIV has a rich and epidemiologically important subtype structure
[110]; Fig. B.5 indicates that the degree-Rips PH is able to see key aspects of this structure,

14To control the size of this bifiltration, RIVET coarsens it slightly so that all simplices are born on a
250× 250 grid. This coarsening is stable, i.e., it changes the modules only slightly in the interleaving distance.
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Figure B.5: RIVET’s visualization of the 0th degree-Rips persistent homology of a data set of
1088 HIV-1 genomes, for two different choices of the line L (shown in blue). The visualization
indicates the presence of two major clusters in the data (large grey regions to the left), each with
several hundred points, as well as 5 smaller clusters of less than 40 points (darker grey regions
to the right). Beyond this, the plots of the Hilbert functions and bigraded Betti numbers exhibit
interesting geometry which encodes subtle information about the size and shape of the clusters.

without any data preprocessing or parameter choices that may bias the results. In contrast,
the 1-parameter Rips PH of this not shown) sees no cluster structure, because of the presence
of low density outliers between the clusters [95, 126].
To be added: Network example, Senate example, and H1 circle example.
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Transactions of the American Mathematical Society, 369(5):3741–3762, 2017.

[13] U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. PHAT–persistent homology
algorithms toolbox. Journal of symbolic computation, 78:76–90, 2017.

[14] U. Bauer, M. Kerber, F. Roll, and A. Rolle. A unified view on the functorial nerve
theorem and its variations. arXiv preprint arXiv:2203.03571, 2022.

[15] U. Bauer and M. Lesnick. Induced matchings and the algebraic stability of persistence
barcodes. Journal of Computational Geometry, 6(2):162–191, 2015.

[16] U. Bauer and M. Lesnick. Persistence diagrams as diagrams: A categorification of the
stability theorem. In Topological Data Analysis, pages 67–96. Springer, 2020.

[17] G. Beltramo, P. Skraba, R. Andreeva, R. Sarkar, Y. Giarratano, and M. O. Bernabeu.
Euler characteristic surfaces. Foundations of Data Science, 2021.

177



[18] P. Bendich, H. Edelsbrunner, D. Morozov, and A. Patel. Homology and robustness of
level and interlevel sets. Homology, Homotopy and Applications, 15(1):51–72, 2013.

[19] K. Benjamin, A. Bhandari, Z. Shang, Y. Xing, Y. An, N. Zhang, Y. Hou, U. Tillmann,
K. R. Bull, and H. A. Harrington. Multiscale topology classifies and quantifies cell
types in subcellular spatial transcriptomics. arXiv preprint arXiv:2212.06505, 2022.

[20] N. Berkouk and G. Ginot. A derived isometry theorem for sheaves. Advances in
Mathematics, 394:108033, 2022.

[21] N. Berkouk and F. Petit. Ephemeral persistence modules and distance comparison.
Algebraic & Geometric Topology, 21(1):247–277, 2021.

[22] C. Betancourt, M. Chalifour, R. Neville, M. Pietrosanu, M. Tsuruga, I. Darcy, and
G. Heo. Pseudo-multidimensional persistence and its applications. In Research in
Computational Topology, pages 179–202. Springer, 2018.

[23] D. Bhaskar, A. Manhart, J. Milzman, J. T. Nardini, K. M. Storey, C. M. Topaz, and
L. Ziegelmeier. Analyzing collective motion with machine learning and topology. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 29(12):123125, 2019.

[24] S. Biasotti, A. Cerri, P. Frosini, and D. Giorgi. A new algorithm for computing the
2-dimensional matching distance between size functions. Pattern Recognition Letters,
32(14):1735–1746, 2011.

[25] S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, and C. Landi. Multidimensional size functions
for shape comparison. Journal of Mathematical Imaging and Vision, 32(2):161–179,
2008.

[26] H. B. Bjerkevik. On the stability of interval decomposable persistence modules. Discrete
& Computational Geometry, pages 1–30, 2021.

[27] H. B. Bjerkevik and M. Lesnick. ℓp-distances on multiparameter persistence modules.
arXiv preprint arXiv:2106.13589, 2021.

[28] A. Björner. Posets, regular cw complexes and bruhat order. European Journal of
Combinatorics, 5(1):7–16, 1984.

[29] A. J. Blumberg and M. Lesnick. Universality of the homotopy interleaving dis-
tance. Transactions of the American Mathematical Society, in press. arXiv preprint
arXiv:1705.01690, 2017.

[30] A. J. Blumberg and M. Lesnick. Stability of 2-parameter persistent homology. Founda-
tions of Computational Mathematics, pages 1–43, 2022.

178



[31] J.-D. Boissonnat, F. Chazal, and M. Yvinec. Geometric and topological inference,
volume 57. Cambridge University Press, 2018.

[32] J.-D. Boissonnat, O. Devillers, K. Dutta, and M. Glisse. Randomized incremental
construction of delaunay triangulations of nice point sets. Discrete & Computational
Geometry, 66(1):236–268, 2021.

[33] J.-D. Boissonnat, O. Devillers, and S. Hornus. Incremental construction of the delaunay
triangulation and the delaunay graph in medium dimension. In Proceedings of the
twenty-fifth annual symposium on Computational geometry, pages 208–216, 2009.

[34] M. Botnan and W. Crawley-Boevey. Decomposition of persistence modules. Proceedings
of the American Mathematical Society, 148(11):4581–4596, 2020.

[35] M. B. Botnan and M. Lesnick. An introduction to multiparameter persistence. Pro-
ceedings of the 2020 International Conference on Representations of Algebras, in press.
arXiv preprint arXiv:2203.14289, 2022.

[36] M. B. Botnan, S. Oppermann, and S. Oudot. Signed Barcodes for Multi-Parameter
Persistence via Rank Decompositions. In X. Goaoc and M. Kerber, editors, 38th
International Symposium on Computational Geometry (SoCG 2022), volume 224 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 19:1–19:18, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[37] M. B. Botnan, S. Oppermann, S. Oudot, and L. Scoccola. On the bottleneck stabil-
ity of rank decompositions of multi-parameter persistence modules. arXiv preprint
arXiv:2208.00300, 2022.

[38] M. B. Botnan and G. Spreemann. Approximating persistent homology in euclidean space
through collapses. Applicable Algebra in Engineering, Communication and Computing,
26(1-2):73–101, 2015.

[39] A. Bowyer. Computing dirichlet tessellations. The computer journal, 24(2):162–166,
1981.

[40] B. Brehm and H. Hardering. Sparips. arXiv preprint arXiv:1807.09982, 2018.

[41] M. Brun and N. Blaser. Sparse dowker nerves. Journal of Applied and Computational
Topology, 3(1):1–28, 2019.

[42] P. Bubenik. The persistence landscape and some of its properties. In Topological Data
Analysis: The Abel Symposium 2018, pages 97–117. Springer, 2020.

[43] P. Bubenik et al. Statistical topological data analysis using persistence landscapes. J.
Mach. Learn. Res., 16(1):77–102, 2015.

179



[44] P. Bubenik, J. Scott, and D. Stanley. Exact weights, path metrics, and algebraic
wasserstein distances. Journal of Applied and Computational Topology, pages 1–35,
2022.

[45] P. Bubenik and J. A. Scott. Categorification of persistent homology. Discrete &
Computational Geometry, 51(3):600–627, 2014.

[46] R. Budney and T. Kaczynski. Bi-filtrations and persistence paths for 2-Morse functions.
arXiv preprint arXiv:2110.08227, 2021.

[47] D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry. American
Mathematical Society Providence, 2001.

[48] Z. Cang, L. Mu, and G.-W. Wei. Representability of algebraic topology for biomolecules
in machine learning based scoring and virtual screening. PLoS computational biology,
14(1):e1005929, 2018.

[49] Z. Cang and G.-W. Wei. Persistent cohomology for data with multicomponent hetero-
geneous information. SIAM Journal on Mathematics of Data Science, 2(2):396–418,
2020.

[50] G. Carlsson, V. de Silva, and D. Morozov. Zigzag persistent homology and real-valued
functions. In Proceedings of the 25th Annual Symposium on Computational Geometry,
SCG ’09, pages 247–256, New York, NY, USA, 2009. ACM.

[51] G. Carlsson, T. Ishkhanov, V. De Silva, and A. Zomorodian. On the local behavior of
spaces of natural images. International Journal of Computer Vision, 76(1):1–12, 2008.

[52] G. Carlsson and F. Mémoli. Multiparameter hierarchical clustering methods. In
Classification as a Tool for Research, pages 63–70. Springer, 2010.

[53] G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete
and Computational Geometry, 42(1):71–93, 2009.

[54] G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas. Persistence barcodes for shapes.
In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, pages 124–135. ACM, 2004.

[55] M. Carrière and A. Blumberg. Multiparameter persistence image for topological machine
learning. Advances in Neural Information Processing Systems, 33:22432–22444, 2020.

[56] N. J. Cavanna, K. P. Gardner, and D. R. Sheehy. When and why the topological
coverage criterion works. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, pages 2679–2690, 2017.

180



[57] N. J. Cavanna, M. Jahanseir, and D. R. Sheehy. A geometric perspective on sparse
filtrations. In Proceedings of the Canadian Conference on Computational Geometry,
2015.

[58] A. Cerri, B. Di Fabio, M. Ferri, P. Frosini, and C. Landi. Betti numbers in multidimen-
sional persistent homology are stable functions. Mathematical Methods in the Applied
Sciences, 36(12):1543–1557, 2013.

[59] J. M. Chan, G. Carlsson, and R. Rabadan. Topology of viral evolution. Proceedings of
the National Academy of Sciences, 110(46):18566–18571, 2013.

[60] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot. Proximity of
persistence modules and their diagrams. In Proceedings of the 25th Annual Symposium
on Computational Geometry, SCG ’09, pages 237–246, New York, NY, USA, 2009.
ACM.

[61] F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli, and S. Y. Oudot. Gromov–
Hausdorff stable signatures for shapes using persistence. In Proceedings of the Sympo-
sium on Geometry Processing, SGP ’09, pages 1393–1403, Aire-la-Ville, Switzerland,
Switzerland, 2009. Eurographics Association.

[62] F. Chazal, D. Cohen-Steiner, and Q. Mérigot. Geometric inference for probability
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[97] K. Fischer, B. Gärtner, and M. Kutz. Fast smallest-enclosing-ball computation in high
dimensions. In European Symposium on Algorithms, pages 630–641. Springer, 2003.

[98] S. Fortune. Voronoi diagrams and delaunay triangulations. In Handbook of Discrete
and Computational Geometry, pages 705–721. Chapman and Hall/CRC, 2017.

[99] U. Fugacci and M. Kerber. Chunk Reduction for Multi-Parameter Persistent Ho-
mology. In G. Barequet and Y. Wang, editors, 35th International Symposium on
Computational Geometry (SoCG 2019), volume 129 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 37:1–37:14, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[100] U. Fugacci, M. Kerber, and A. Rolle. Compression for 2-parameter persistent homology.
arXiv preprint arXiv:2107.10924, 2021.

[101] P. Gabriel and A. Roiter. Representations of finite-dimensional algebras, with a chapter
by b. keller, encyclopedia math. sci. 73, algebra viii, 1–177, 1992.
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